Published online by Cambridge University Press: 24 October 2008
In 1955 [1], Amitsur determined all the finite groups G that can be embedded in the multiplicative group T* = GL(1, T) of some division ring T of characteristic zero. If G can be so embedded, then the rational span of G in T is a division ring of finite dimension over ℚ, and G acts on it by right multiplication in such a way that every non-trivial element operates fixed point freely. The finite groups admitting such a representation had earlier been determined by Zassenhaus[24; 4, XII. 8], and Amitsur begins by quoting Zassenhaus' results, which show in particular that the only perfect group that can be embedded in the multiplicative group of a division ring of characteristic zero is SL(2,5). The more difficult part of Amitsur's paper is the determination of the possible soluble groups. Here the main tool is Hasse's theory of cyclic algebras over number fields.