Published online by Cambridge University Press: 24 October 2008
A method is presented whereby all locally defined conserved currents of the Klein-Gordon field are found. The mathematical background to the method includes a generalization of the Poincaré lemma of the calculus of exterior differential forms. It is found that the only conserved currents are essentially a countably infinite set of functions, bilinear in the field, together with a single current in the case where the mass is zero. The usual energy-momentum tensor is included amongst these functions. The method does not depend on the use of any canonical formulation of the field theory.