Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T00:55:25.806Z Has data issue: false hasContentIssue false

Bending of an eccentrically loaded and concentrically supported thin circular plate. I

Published online by Cambridge University Press:  24 October 2008

W. A. Bassali
Affiliation:
University of Alexandria
F. R. Barsoum
Affiliation:
University of Alexandria

Abstract

Within the limitations of the classical small deflexion theory of thin plates and using complex variable methods, exact expressions are obtained in series form for the deflexion at any point of a thin isotropic circular plate simply supported along a concentric circle and subject to loading symmetrically distributed over an eccentric circular patch which lies inside the circle of support. In special and limiting cases the solutions reduce to those obtained before.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Attia, M. S. and Nassif, M.Bull. Calcutta Math. Soc. 54 (1962), 131.Google Scholar
(2)Bassali, W. A.Proc. Cambridge Philos. Soc. 52 (1956), 734749.CrossRefGoogle Scholar
(3)Bassali, W. A.Proc. Cambridge Philos. Soc. 53 (1957), 728.CrossRefGoogle Scholar
(4)Bassali, W. A.Proc. Cambridge Philos. Soc. 54 (1958), 265.Google Scholar
(5)Bassali, W. A. and Dawoud, R. H.Proc. Cambridge Philos. Soc. 52 (1956), 584.CrossRefGoogle Scholar
(6)Bassali, W. A. and Dawoud, R. H.Proc. Math. Phys. Soc. Egypt 21 (1957).Google Scholar
(7)Bassali, W. A. and Nassif, M.Proc. Cambridge Philos. Soc. 54 (1958), 288.CrossRefGoogle Scholar
(8)Dunders, J. and Tung-Ming, Lee. J. Appl. Mech. 30 (1963), 225.Google Scholar
(9)Lechnitzky, S. G.J. Appl. Math. Mech. 2 (1938), 181.Google Scholar
(10)Muskhelishvili, N. I.Math. Ann. 107 (1932), 282.CrossRefGoogle Scholar
(11)Muskhelishvili, N. I.Some basic problems of the mathematical theory of elasticity, 3rd ed. (Moscow, 1949).Google Scholar