Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T13:18:22.023Z Has data issue: false hasContentIssue false

Affine bundles and integrable almost tangent structures

Published online by Cambridge University Press:  24 October 2008

M. Crampin
Affiliation:
Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.
G. Thompson
Affiliation:
Department of Mathematics, University of North Carolina, Chapel Hill, NC 27514, U.S.A.

Extract

An almost tangent structure on a manifold N is a type (1,1) tensor field S onN with the property that at each point yN the kernel of Sy (regarded as a linear endo-morphism of TyN) coincides with its image. An almost tangent structure is said to be integrable if its Nijenhuis tensor vanishes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brickell, F. and Clark, R. S.. Integrable almost tangent structures. J. Differential Geom. 9 (1974), 557563.CrossRefGoogle Scholar
[2]Clark, R. S. and Bruckheimer, M.. Sur les structures presque tangents. C. R. Acad. Sci. Paris 251 (1960), 627629.Google Scholar
[3]Clark, R. S. and Goel, D. S.. On the geometry of an almost tangent manifold. Tensor (N.S.) 24 (1972), 243252.Google Scholar
[4]Crampin, M.. Tangent bundle geometry for Lagrangian dynamics. J. Phys. A 16 (1983), 37553772.Google Scholar
[5]Crampin, M.. Defining Euler-Lagrange fields in terms of almost tangent structures. Phys. Lett. 95 A (1983), 466468.CrossRefGoogle Scholar
[6]Eliopoulos, H. A.. Structures presque tangents sur les variétés différentiables. C. R. Acad. Sci. Paris 255 (1962), 15631565.Google Scholar
[7]Eliopoulos, H. A.. On the general theory of differentiable manifolds with almost tangent structure. Canad. Math. Bull. 8 (1965), 721748.CrossRefGoogle Scholar
[8]GoLDSCHMIDT, H.. Integrability criteria for systems of nonlinear partial differential equations. J. Differential Geom. 1 (1967), 269307.CrossRefGoogle Scholar
[9]Grifone, J.. Structure presque-tangent et connexions I. Ann. Inst. Fourier 22 (1972), no. 1, 287334.CrossRefGoogle Scholar
[10]Grifone, J.. Structure presque-tangent et connexions II. Ann. Inst. Fourier 22 (1972), no. 3, 291338.CrossRefGoogle Scholar
[11]Klein, J.. Espaces variationnels et mécanique. Ann. Inst. Fourier 12 (1962), 1124.CrossRefGoogle Scholar
[12]Klein, J.. Structures symplectiques ou J-symplectiques homogènes sur l'espace tangent à une variété. Sympos. Math. 14 (1974), 181192.Google Scholar
[13]Klein, J.. Proc. IUTAM-ISIMM symposium on modern developments in analytical mechanics (Torino, 1982).Google Scholar
[14]Sternberg, S.. Lectures on differential geometry (Prentice-Hall, 1964).Google Scholar
[15]Yano, K. and Davies, E. T.. Differential geometry on almost tangent manifolds. Ann. Mat. Pura Appl. (4) 103 (1975), 131160.CrossRefGoogle Scholar
[16]Yano, K. and Ishihara, S.. Tangent and cotangent bundles (Marcel Dekker, 1973).Google Scholar