Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:57:19.081Z Has data issue: false hasContentIssue false

Weak convergence of randomly indexed sequences of random variables

Published online by Cambridge University Press:  24 October 2008

D. J. Aldous
Affiliation:
Statistical Laboratory, University of Cambridge

Extract

Let YnY be a sequence of random variables converging in distribution, or more generally a sequenceof random elements of a suitable metric space whose distributions are converging weakly. Let τn → ∞ be positive integer-valued random variables. If {τn} and {Yn} are independent, it is trivial that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Anscombe, F. J. Large-sample theory of sequential estimation. Proc. Cambridge Philos. Soc. 48 (1952), 600607.CrossRefGoogle Scholar
(2) Billingsley, P. Convergence of probability measures (New York: Wiley, 1968).Google Scholar
(3) Csörgö, M. and Csörgö, S. On weak convergence of randomly selected partial sums. Acta Sci. Math. Segediensis 34 (1973),5360.Google Scholar
(4) Durrett, R. T. and Resnick, S. I. Weak convergence with random indices. Stochastic Processes Appl. (To appear.)Google Scholar
(5) Fischler, R. Suites des bi-probabilities stables. Annales de la Faculté des Sciences de l'Université de Clermont 43 (1970), 159167.Google Scholar
(6) Fischler, R. Convergence faible avec indices aléatories. Annales de l'Institut Henri Poincaré (B) 12 (1976), 391399.Google Scholar
(7) Gulasu, S. On the asymptotic distribution of sequences of random variables with random indices. Ann. Math. Stat. 42 (1971), 20182028.Google Scholar
(8) Lindvaal, T. Weak convergence on the function space D[0, ∞). J. Appl. Prob. 10 (1973), 109121.CrossRefGoogle Scholar
(9) Rényi, A. On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 (1958), 215228.CrossRefGoogle Scholar
(10) Rényi, A. On stable sequences of events. Sankyha 25 (1963), 293302.Google Scholar
(11) Aldous, D. J. and Eagleson, G. K. On mixing and stability of limit theorems. (To appear.)Google Scholar