Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T08:26:40.709Z Has data issue: false hasContentIssue false

The uniform Kadec–Klee property for Orlicz–Lorentz spaces

Published online by Cambridge University Press:  01 September 2007

A. KAMIŃSKA
Affiliation:
Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, U.S.A. email: [email protected]
CHRIS LENNARD
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. email: [email protected]
MIECZYSŁAW MASTYŁO
Affiliation:
Faculty of Mathematics and Computer Science, A. Mickiewicz University; and Institute of Mathematics, Polish Academy of Science (Poznań branch), Umultowska 87, 61-614 Poznań, Poland. email: [email protected]
SYLWIA MIKULSKA
Affiliation:
Institute of Mathematics, Szczecin University of Technology, Al. Piastów 48/49, 70-311 Szczecin, Poland. email: [email protected]

Abstract

We give sufficient conditions, as well as some necessary conditions, for the Orlicz–Lorentz space Λϕ,ω to have the weak-star uniform Kadec–Klee property. These results generalize the characterization of the weak-star uniform Kadec–Klee property in the Lorentz space Λω = Lω,1 due to Dilworth and Hsu.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bennett, C. and Sharpley, R.. Interpolation of operators. Pure Appl. Math. 129 (Academic Press, 1988).Google Scholar
[2]Carothers, N. L., Dilworth, S. J., Lennard, C. J. and Trautman, D. A.. A fixed point property for the Lorentz space Lp,1. Indiana Univ. Math. J. 40 (1991), 345352.CrossRefGoogle Scholar
[3]Dilworth, S. J. and Hsu, Yu-Ping. The uniform Kadec–Klee property for the Lorentz spaces Lw,1. J. Austral. Math. Soc. Ser A 60 (1996), 717.CrossRefGoogle Scholar
[4]Dilworth, S. J. and Lennard, C. J.. Uniform Kadec–Klee Lorentz spaces Lw,1 and uniformly concave functions. Canad. Math. Bulletin 39 (3) (1996), 266274.CrossRefGoogle Scholar
[5]Dodds, P. G., Dodds, T. K., Dowling, P. N., Lennard, C. J. and Sukochev, F. A.. A uniform Kadec–Klee property for symmetric operator spaces. Math. Proc. Camb. Phil. Soc. 118 (1995), 487502.CrossRefGoogle Scholar
[6]van Dulst, D. and Sims, B.. Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK). in: Banach Space Theory and its Applications (Proc Bucharest, 1981), Lecture Notes in Math. 991 (Springer, 1983), 3543.CrossRefGoogle Scholar
[7]Dulst, D. van and de Valk, V.. (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces. Canad. J. Math. 38 (3) (1986), 728750.CrossRefGoogle Scholar
[8]Hudzik, H., Kamińska, A. and Mastył, M.. On the dual of Orlicz–Lorentz space. Proc. Amer. Math. Soc. 130 (2002), 16451654.CrossRefGoogle Scholar
[9]Kalton, N. J., Peck, N. T. and Roberts, J. W.. An F-space Sampler. (Cambridge University Press, 1984).CrossRefGoogle Scholar
[10]Kamińska, A. and Mastył, M.. Duality and classical opearators in function spaces. Report No. 112/(2001), 30 pp., Faculty of Math. and Comp. Sci., Poznań.Google Scholar
[11]Kamińska, A.. Some remarks on Orlicz–Lorentz spaces. Math. Nachr. 147 (1990), 2938.CrossRefGoogle Scholar
[12]Kamińska, A.. Uniform convexity of generalized Lorentz spaces. Arch. Math. 56 (1991), 181188.CrossRefGoogle Scholar
[13]Kamińska, A., Maligranda, L. and Persson, L. E.. Convexity, concavity, type and cotype of Lorentz spaces. Indag. Math., N.S. 9 (3) (1998), 367382.CrossRefGoogle Scholar
[14]Kantorovich, L. V. and Akilov, G. P.. Functional Analysis, 2nd rev. ed., “Nauka” (Moscow, 1997) (in Russian); (English transl., Pergamon Press, 1982).Google Scholar
[15]Kirk, W. A.. A fixed point theorem for mappings which do not increase distances. Amer. Math Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[16]Krasnoselskii, M. A. and Rutickii, Ya. B.. Convex Functions and Orlicz Spaces (Noordhoff Groningen, 1961).Google Scholar
[17]Krein, S. G., Petunin, Ju. I. and Semenov, E. M.. Interpolation of linear operators. Amer. Math. Soc. Trans. of Math. Monog. 54 (Providence, 1982).Google Scholar
[18]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces II (Springer-Verlag, 1979).CrossRefGoogle Scholar
[19]Natanson, I. P.. Theory of Functions of a Real Variable (Frederik Unger Publ. Co., 1995).Google Scholar
[20]Royden, H. L.. Real Analysis (MacMillan Publ. Co., 1988).Google Scholar