Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:50:18.871Z Has data issue: false hasContentIssue false

The twisted Bockstein coboundary

Published online by Cambridge University Press:  24 October 2008

Robert Greenblatt
Affiliation:
Cornell University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Note
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Cartan, H. Homologie des groupes. IV, in Seminaire Henri Cartan, 1950/1951 (Paris, 1955).Google Scholar
(2)Cartan, H. and Eilenberg, S.Homological algebra (Princeton, 1956).Google Scholar
(3)Eilenberg, S.Homology of spaces with operators. I. Trans. Amer. Math. Soc. 61 (1947), 378417.CrossRefGoogle Scholar
(4)Greenblatt, R. Thesis (Yale University, 1963).Google Scholar
(5)Gbeenblatt, R.Twisted characteristic classes of real n-plane bundles. Amer. Math. Soc. Notices 10 (1963), 279.Google Scholar
(6)Maclane, S.Homology (New York, 1963).CrossRefGoogle Scholar
(7)Samelson, H.A note on the Bockstein operator. Proc. Amer. Math. Soc. 15 (1964), 450.CrossRefGoogle Scholar
(8)Steenrod, N. E.Homology with local coefficients. Ann. Math. 44 (1943), 610627.CrossRefGoogle Scholar
(9)Steenrod, N. E.Topology of fibre bundles (Princeton, 1951).CrossRefGoogle Scholar
(10)Steenrod, N. E. Cohomology operations. Symposium internacional de topologica algebraica (Mexico, 1958), 165185.Google Scholar