Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T09:41:39.945Z Has data issue: false hasContentIssue false

Some identities for terminating q-series

Published online by Cambridge University Press:  24 October 2008

D. M. Bressoud
Affiliation:
Pennsylvania State University

Extract

We present the following sequence of polynomial identities:

is the Gaussian polynomial denned to be zero for m < 0 or m > N, one for m = 0 or N and

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Andrews, G. E.A polynomial identity which implies the Rogers-Ramanujan identities. Scripta Math. 28 (1970), 297305.Google Scholar
(2)Andrews, G. E.Problem 74–12. SIAM Review, 16 (1974), 390.Google Scholar
(3)Andrews, G. E.Applications of basic hypergeometric functions. SIAM Review, 16 (1974), 441484.Google Scholar
(4)Andrews, G. E. Problems and prospects for basic hypergeometric functions. In Theory and application of special functions, ed. Askey, R. A. (Academic Press, New York, 1975).Google Scholar
(5)Andrews, G. E.The theory of partitions. vol. 2 in Encyclopedia of Mathematics, ed. Rota, G.-C. (Addison-Wesley, Reading, Mass. 1976).Google Scholar
(6)Bailey, W. N.Some identities in combinatory analysis. Proc. London Math. Soc. (2), 49 (1947), 421435.Google Scholar
(7)Bailey, W. N.Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 50 (1949), 110.Google Scholar
(8)Bressoud, D. M.On partitions, orthogonal polynomials and the expansion of certain infinite products. Proc. London Math. Soc. (To appear).Google Scholar
(9)Dyson, F. J.Three identities in combinatory analysis. J. London Math. Soc. 18 (1943), 3539.Google Scholar
(10)Hardy, G. H.Ramanujan (Cambridge University Press, 1940).Google Scholar
(11)Heine, E.Untersuchungen über die Reihe…. J. Reine Angew. Math. 34 (1847), 285328.Google Scholar
(12)Jackson, F. H.Transformation of q-series. Mess. Math. 39 (1910), 145151.Google Scholar
(13)Jackson, F. H.Summation of q-hypergeometric series. Mess. Math. 50 (1921), 101112.Google Scholar
(14)Rogers, L. J.Second memoir on the expansion of certain infinite products. Proc. London Math. Soc. 25 (1894), 318343.Google Scholar
(15)Rogers, L. J.Third memoir on the expansion of certain infinite products. Proc. London Math. Soc. 26 (1895), 1532.Google Scholar
(16)Rogers, L. J.On two theorems of combinatory analysis and some allied identities. Proc. London Math. Soc. (2), 16 (1916), 315336.Google Scholar
(17)Selberg, A.Über einige arithmetische Identitäten. Arhl. Norske Vid. 8 (1936).Google Scholar
(18)Slater, L. J.A new proof of Rogers' transformations of infinite series. Proc. London Math. Soc. (2), 53 (1951), 460475.Google Scholar
(19)Slater, L. J.Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 54 (1952), 147167.Google Scholar
(20)Slater, L. J.Generalized hypergeometric functions (Cambridge University Press, 1966).Google Scholar
(21)Watson, G. N.A new proof of the Rogers-Ramanujan identities. J. London Math. Soc. 4 (1929), 49.Google Scholar
(22)Rothe, H. A.Systematisches Lehrbuch der Arithmetik (Leipzig, 1811).Google Scholar