Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T12:56:19.494Z Has data issue: false hasContentIssue false

Some expansions in products of hypergeometric functions

Published online by Cambridge University Press:  24 October 2008

H. M. Srivastava
Affiliation:
Department of Mathematics, Jodhpur University, India

Extract

In the usual notation let

where .

Also, for the generalized hypergeometric function pFq(x) let us employ a contracted notation and write

Throughout the present paper i will run from 1 to p, I from 1 to P, and so on. Thus ((a) )m is to be interpreted as

,

and similar interpretations hold for ((A))m, etc.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Al-Salam, W. A. and Carlitz, L.Some functions associated with the Bessel functions. J.Math. Mech. 12 (1963), 911934.Google Scholar
(2)Apfell, P. et, Kampé de, Fébiet J.Fonctions hypérgiométriques et hypersphériques: Polynomea d'hermite (Gauthier-Villars; Paris, 1926).Google Scholar
(3)Bailey, W. N. Some expansions in Bessel functions involving Appell'a function F 4. Quart. J. Math. (Oxford), 6 (1935), 233238.Google Scholar
(4)Burchnall, J. L. and Chaundy, T. W.Expansions of Appell's double hypergeometric functions. II. Quart. J. Math. (Oxford), 12 (1941), 112128.CrossRefGoogle Scholar
(5)Carlitz, L.Some expansions in products of Bessel functions. Quart. J. Math. (Oxford) (2) 13 (1962), 134136.CrossRefGoogle Scholar
(6)Erdélyi, A.et al. Higher transcendental functions. vol. II (McGraw-Hill; New York, 1953).Google Scholar
(7)Slater, L. J.Expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 50 (1954), 628631.CrossRefGoogle Scholar
(8)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(9)Srivastava, H. M.Some expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 61 (1965), 895896.CrossRefGoogle Scholar
(10)Watson, G. N.Theory of Bessel functions (Cambridge, 1944).Google Scholar