Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T13:14:12.919Z Has data issue: false hasContentIssue false

The role of algebraic solutions in planar polynomial differential systems

Published online by Cambridge University Press:  01 September 2007

HÉCTOR GIACOMINI
Affiliation:
Lab. de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours, France. email [email protected]
JAUME GINÉ
Affiliation:
Departament deMatemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain. email: [email protected], [email protected]
MAITE GRAU
Affiliation:
Departament deMatemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain. email: [email protected], [email protected]

Abstract

We study a planar polynomial differential system, given by . We consider a function , where gi(x) are algebraic functions of with ak(x) and algebraic functions, A0(x,y) and A1(x,y) do not share any common factor, h2(x) is a rational function, h(x) and h1(x) are functions of x with a rational logarithmic derivative and . We show that if I(x,y) is a first integral or an integrating factor, then I(x,y) is a Darboux function. A Darboux function is a function of the form , where fi and h are polynomials in and the λi's are complex numbers. In order to prove this result, we show that if g(x) is an algebraic particular solution, that is, if there exists an irreducible polynomial f(x,y) such that f(x,g(x)) ≡ 0, then f(x,y) = 0 is an invariant algebraic curve of the system. In relation with this fact, we give some characteristics related to particular solutions and functions of the form I(x,y) such as the structure of their cofactor.

Moreover, we consider A0(x,y), A1(x,y) and h2(x) as before and a function of the form . We show that if the derivative of Φ(x,y) with respect to the flow is well defined over {(x,y): A0(x,y) = 0} then Φ(x,y) gives rise to an exponential factor. This exponential factor has the form exp {R(x,y)} where and with B1/B0 a function of the same form as h2A1/A0. Hence, exp {R(x,y)} factorizes as the product Φ(x,y) Ψ(x,y), for Ψ(x,y): = exp {B1/B0.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Casas–Alvero, E.. Singularities of Plane Curves. London Mathematical Society Lecture Note Series 276 (Cambridge University Press, 2000).Google Scholar
[2]Chavarriga, J., Giacomini, H., Giné, J., and Llibre, J.. Darboux integrability and the inverse integrating factor. J. Diff. Eq. 194 (2003), 116139.Google Scholar
[3]Christopher, C.. Invariant algebraic curves and conditions for a centre. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 12091229.Google Scholar
[4]Christopher, C.. Liouvillian first integrals of second order polynomial differential systems. Electron. J. Differential Equations 1999 (1999), 17.Google Scholar
[5]Christopher, C. and Llibre, J.. Integrability via invariant algebraic curves for planar polynomial differential systems. Ann. Differential Equations 16 (2000), 519.Google Scholar
[6]García, I. A., Giacomini, H., and Giné, J.Generalized nonlinear superposition principles for polynomial planar vector fields. J. Lie Theory 15 (2005), 89104.Google Scholar
[7]García, I. A. and Giné, J.. Generalized cofactors and nonlinear superposition principles. Appl. Math. Lett. 16 (2003), 11371141.CrossRefGoogle Scholar
[8]Giacomini, H. and Giné, J.. An algorithmic method to determine integrability for polynomial planar vector fields. European J. Appl. Math. 17 (2006), 161170.Google Scholar
[9]Giacomini, H., Giné, J., and Grau, M.. Integrability of planar polynomial differential systems through linear differential equations. Rocky Mountain J. Math. 36 (2006), 457486.Google Scholar
[10]Hille, E.. Analytic Function Theory Vol. II. Introductions to Higher Mathematics (Ginn and Co. 1962).Google Scholar
[11]Lang, S.. Algebra. Revised third edition. Graduate Texts in Mathematics 211 (Springer-Verlag, 2002).Google Scholar
[12]Moulin–Ollagnier, J.. About a conjecture on quadratic vector fields. J. Pure Appl. Alg. 165 (2001), 227234.Google Scholar
[13]Moulin–Ollagnier, J.. Simple Darboux points of polynomial planar vector fields. J. Pure Appl. Alg. 189 (2004), 247262.Google Scholar
[14]Painlevé, P.. Mémoire sur les équations différentielles du premier ordre dont l'intégrale est de la forme . Ann. Fac. Sc. Univ., Toulouse (1896), 1–37; reprinted in Œuvres, tome 2, –582.Google Scholar
[15]Prelle, M. J. and Singer, M. F.. Elementary first integrals of differential equations. Trans. Amer. Math. Soc. 279 (1983), 215229.Google Scholar
[16]Schinzel, A.. Polynomials with Special regard to reducibility. Encyclopedia of Mathematics and its Applications 77 (Cambridge University Press, 2000).Google Scholar
[17]Singer, M. F.. Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc. 333 (1992), 673688.Google Scholar
[18]Walker, R. J.. Algebraic Curves. Reprint of the 1950 edition (Springer-Verlag, 1978).Google Scholar