Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T16:46:41.070Z Has data issue: false hasContentIssue false

On the existence of metric differential geometries based on the notion of area

Published online by Cambridge University Press:  24 October 2008

F. Brickell
Affiliation:
University CollegeSouthampton

Extract

The problem of constructing an n-dimensional metric differential geometry based on the idea of a two-dimensional area has given rise to several publications, notably by A. Kawaguchi and S. Hokari (1), E. T. Davies (2), and R. Debever (3). In this geometry the area of a two-dimensional plane element is defined by a fundamental function L(xi, uhk), where the xi are point coordinates and the uhk are the coordinates of the simple bivector representing the plane element. L is supposed to be a positive homogeneous function of the first degree with respect to the variables uij, and to possess continuous partial derivatives up to and including those of the fourth order. With these assumptions the problem of the construction of the metric differential geometry splits into two problems; the first of these is the problem of constructing a metric tensor gij(xr, uhk), and the second is the problem of constructing an affine connexion. We deal with the first problem only in this paper.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Kawaguchi, A. and Hokari, S.Die Grundlegung der Geometrie der 5-dimensionalen metrischen Räume auf Grund des Begriffs des 2-dimensionalen Flächeninhalts. Proc. Imp. Acad. Japan, 16 (1940), 313–19.Google Scholar
(2)Davies, E. T.The geometry of a multiple integral. J. London Math. Soc. 20 (1945), 163–71.CrossRefGoogle Scholar
(3)Debever, R. Sur une classe d'espaces à connexion euclidienne. Thèse (Bruxelles, 1947).Google Scholar
(4)Cartan, E. Les espaces de Finsler. Actualités, No. 79 (Paris, 1934).Google Scholar
(5)Berwald, L.Über die N-dimensionalen Cartanschen Räume und eine Normalform der zweiten Variation eines (N − 1)-fachen Oberflächenintegrals. Acta Math. 71 (1939), 191248.CrossRefGoogle Scholar
(6)Brickell, F.On metrical geometries based on an integral as fundamental invariant. Proc. London Math. Soc. (in the Press).Google Scholar
(7)Cartan, E. Les espaces métriques fondés sur la notion d'aire. Actualités, No. 72 (Paris, 1933).Google Scholar
(8)Schouten, J. A. and Struik, D. J.Einführung in die Neusen Methoden der Differential geometrie (I) (Groningen, 1935).Google Scholar
(9)Cartan, E. Les systèmes différentiels extérieurs et leurs applications géométriques. Actualités, No. 994 (Paris, 1945).Google Scholar