Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T13:03:32.046Z Has data issue: false hasContentIssue false

On the contractibility to a point of the linear groups of reflexive non-commutative Lp-spaces

Published online by Cambridge University Press:  24 October 2008

Sergei V. Ferleger
Affiliation:
Department of Mathematics, Pennsylvania State University, 218 McAllister Building, PA 16802–6401, U.S.A.
Fyodor A. Sukochev
Affiliation:
Department of Mathematics and Statistics, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia

Extract

For every Banach space X, denote by GL(X) the linear group of X, i.e. the group of all linear continuous invertible operators on X with the topology induced by the operator norm. One says that GL(X) is contractible to a point if there exists a continuous map F: GL(X) × [0, 1] → GL(X) such that F(A,0) = A and F(A, 1) = Id, for every AGL(X).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berkson, E., Gillespie, T. A. and Muhly, P. S.. Generalized analiticity in UMD spaces. Arkiv for Math. 27 (1989), 114.CrossRefGoogle Scholar
[2]Berkson, E., Gillespie, T. A. and Muhly, P. S.. Théorie spectrale dans les espaces UMD. C.R. Acad. Sci. Paris 302, Serie I (1986), 155158.Google Scholar
[3]Bourgain, J.. Some remarks on Banach spaces in which martingale differences are unconditional. Arkiv for Math. 21 (1983), 163168.CrossRefGoogle Scholar
[4]Buhvalov, A. V.. Continuity of operators in the spaces of vector-valued functions with applications to the bases theory. Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov 157 (1987), 522 (Russian).Google Scholar
[5]Burkholder, D. L.. Martingale transforms and the geometry of Banach spaces. Lecture Notes Math. 860 (1981), 3550.CrossRefGoogle Scholar
[6]Chilin, V. I., Krygin, A. V. and Sukochev, F. A.. Extreme points of convex fully symmetric sets of measurable operators. Integr. Equal. Oper. Th. 15 (1992), 186225.CrossRefGoogle Scholar
[7]Edwards, R. E.. Fourier series I (Springer-Verlag, 1982).CrossRefGoogle Scholar
[8]Fack, T. and Kosaki, H.. Generalized s-numbers of T-measurable operators. Pacif. J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[9]Gohberg, I. C. and Krein, M. G.. Introduction to the theory of linear non-selfadjoint operators. Amer. Math. Soc. Translations, 18.Google Scholar
[10]Kuiper, N. H.. The homotopy type of the unitary group of Hubert space. Topology 3 (1965), 1930.CrossRefGoogle Scholar
[11]Lindenstrauss, J. and Tzafriri, L.. Classical Banach spaces I (Springer-Verlag, 1977).CrossRefGoogle Scholar
[12]Mityagin, B. S.. The homotopic structure of linear group of Banach space. Uspehi Mat. Nauk 25 (5) (1970) (Russian).Google Scholar
[13]Mityagin, B. S. and Edelstein, I. S.. The homotopic type of linear groups of two classes of Banach spaces. Funk, analiz i ego pril. 4 (3) (1970), 6172 (Russian).Google Scholar
[14]Neubauer, G.. Der Homotopictyp der Automorphismengruppe in der Raumen lp and c 0. Math. Ann. 174 (1967), 3340.CrossRefGoogle Scholar
[15]Sakai, S.. C*-algebras and W*-algebras (Springer-Verlag, 1971).Google Scholar
[16]Takesaki, M.. Theory of operator algebras I (Springer-Verlag, 1979).CrossRefGoogle Scholar
[17]Yeadon, F. J.. Isometries of non-commutative L p-spaces. Math. Proc. Camb. Phil. Soc. 90 (1981), 4150.CrossRefGoogle Scholar