Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T13:43:09.867Z Has data issue: false hasContentIssue false

On quaternionic functional analysis

Published online by Cambridge University Press:  01 September 2007

CHI-KEUNG NG*
Affiliation:
The Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, P.R. China. email: [email protected]

Abstract

In this paper, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B*-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C*-algebras respectively. We will also give a Riesz representation theorem for quaternion Hilbert spaces and will extend the main results in [12] (namely, we will give the full versions of the Gelfand–Naimark theorem and the Gelfand theorem for quaternion B*-algebras). On our way to these results, we compare, clarify and unify the term ‘quaternion Hilbert spaces’ in the literatures.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abel, M. and Jarosz, K.. Noncommutative uniform algebras. Studia Math. 162 (2004), 213218.CrossRefGoogle Scholar
[2]Agrawal, S. and Kulkarni, S. H.. An analogue of the Riesz-representation theorem. Novi Sad J. Math. 30 (2000), 143154.Google Scholar
[3]Agrawal, S. and Kulkarni, S. H.. Dual spaces of quaternion normed linear spaces and reflexivity. J. Anal. 8 (2000), 7990.Google Scholar
[4]Biedenharn, L. C., Cassinelli, G. and Truini, P.. Imprimitivity theorem and quaternionic quantum mechanics. Proceedings of the Third Workshop on Lie-Admissible Formulations (University Massachusetts, Boston, Mass., 1980), Part B. Hadronic J. 4 (1980/81), 981–994.Google Scholar
[5]Cassinelli, G. and Truini, P.. Quantum mechanics of the quaternionic Hilbert spaces based upon the imprimitivity theorem. Rep. Math. Phys. 21 (1985), 4364.CrossRefGoogle Scholar
[6]Biedenharn, L. C. and Horwitz, L. P.. Quaternion quantum mechanics: second quantization and gauge fields. Ann. Phys. 157 (1984), 432488.Google Scholar
[7]Horwitz, L. P. and Razon, A.. Tensor product of quaternion Hilbert modules. Acta Appl. Math. 24 (1991), 141178.Google Scholar
[8]Horwitz, L. P. and Razon, A.. Projection operators and states in the tensor product of quaternion Hilbert modules. Acta Appl. Math. 24 (1991), 179194.Google Scholar
[9]Horwitz, L. P. and Razon, A.. Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules. J. Math. Phys. 33 (1992), 30983104.Google Scholar
[10]Horwitz, L. P. and Soffer, A.. B*-algebra representations in quaternionic Hilbert module. J. Math. Phys. 24 (1984), 27802782.Google Scholar
[11]Kulkarni, S. H.. Representation of a class of real B*-algebras as algebras of quaternion-valued functions. Proc. Amer. Math. Soc. 116 (1992), 6166.Google Scholar
[12]Kulkarni, S. H.. Representation of a real B*-algebra on a quaternionic Hilbert space. Proc. Amer. Math. Soc. 121 (1994), 505509.Google Scholar
[13]Lance, E. C.. Hilbert C*-modules: A toolkit for operator algebraists. London Math. Soc. Lect. Note Ser. 210 (Cambridge University Press, 1995).Google Scholar
[14]Li, B. R.. Real Operator Algebras (World Scientific Publishing Co., 2003).CrossRefGoogle Scholar
[15]Ludkovsky, S. V.. Unbounded operators on Banach spaces over the quaternion field. arXiv: math.OA/0404444 v1 (2004).Google Scholar
[16]Natarajan, S. and Viswanath, K.. Quaternionic representations of compact metric groups. J. Math. Phys. 8 (1967) 582589.CrossRefGoogle Scholar
[17]Ng, C. K.. Regular normed bimodules. J. Oper. Theory 56 (2) (2006), 343355.Google Scholar
[18]Ng, C. K.. Duality of quaternion normed space, preprint.Google Scholar
[19]Ryan, R. A.. Introduction to Tensor Products of Banach Spaces. Springer Monogr. Math. (Springer-Verlag, 2002).CrossRefGoogle Scholar
[20]Suhomlinov, G.. On extensions of linear functions in complex and quaternionic linear spaces. Mat. Sbornik 3 (1938), 353358.Google Scholar
[21]Torgasev, A.. On the symmetric quaternionic Banach algebras I: Geljfand theory. Publ. Inst. Math. (Beograd) (N.S.) 24 (38) (1978), 173188.Google Scholar
[22]Torgasev, A.. Quaternionic operators with finite matrix trace. Integral Equations Operator Theory 23 (1995), 114122.Google Scholar
[23]Torgasev, A.. On reflexivity of a quaternion normed space. Novi Sad J. Math. 27 (1997), 5764.Google Scholar
[24]Torgasev, A.. Dual space of a quaternion Hilbert space. Facta Univ. Ser. Math. Inform. 14 (1999), 7177.Google Scholar
[25]Viswanath, K.. Normal operations on quaternionic Hilbert spaces. Trans. Amer. Math. Soc. 162 (1971), 337350.Google Scholar