Published online by Cambridge University Press: 24 October 2008
It is shown that, in a simply connected four dimensional Riemannian space, an arbitrary divergence-free vector generates a one-parameter group of point transformations which leaves Maxwell's equations unchanged. This result is used to show that, if the metric tensor of a simply connected vacuum Einstein–Maxwell space-time admits a group of motions which is also an invariance group of the electromagnetic field tensor, then there exists a one-parameter family of metric tensors all of which satisfy the Einstein–Maxwell equations with the invariant electromagnetic field as source.