Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T13:07:59.319Z Has data issue: false hasContentIssue false

On integrals involving classical polynomials

Published online by Cambridge University Press:  24 October 2008

G. K. Dhawan
Affiliation:
Maulana Azad College of Technology, Bhopal, India

Extract

We know ((6), p. 343) that

and

where α,β,α′ and β′ are parameters such that

Consider

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Edwards, J.A treatise on integral calculus, vol. 2 (New York, 1922).Google Scholar
(2)Rainville, E. D.Special functions (New York, 1962).Google Scholar
(3)Singh, R. P.Some integrals involving the products of orthogonal polynomials and their derivatives. Proc. Nat. Acad. Sci. India, Part A, 34 (1964).Google Scholar
(4)Singh, R. P.Some polynomials related to generalized Laguerre polynomials. Proc. Nat. Acad. Sci. India, Part A, 34 (1964).Google Scholar
(5)Singh, R. P. and Srivastava, K. N.A note on generalization of Laguerre and Humbert polynomials. Ricerca (Napoli) (2), 14 (1963)Google Scholar
settembre-diecembre, 11–21, errata Singh, R. P. and Srivastava, K. N.A note on generalization of Laguerre and Humbert polynomials. Ricerca (Napoli) (2), 15 (1964), maggio-angusto, 63.Google Scholar
(6)Williamson, B.An elementary treatise on integral calculus (1955).Google Scholar