Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T16:34:56.679Z Has data issue: false hasContentIssue false

Lp(G)-isotone measures

Published online by Cambridge University Press:  24 October 2008

Beryl J. Peers
Affiliation:
University of York

Extract

Let G be a locally compact topological group with left Haar measure, m; let M(G) denote the bounded regular Borel measures on G and let Lp(G) denote the equivalence classes of pth power integrable functions on G with respect to the left Haar measure.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Topologie generale, ch. 3 and 4 (3rd Ed.) (Actualités Sci. Indust. 1143; Hermann, Paris, 1960).Google Scholar
(2)Hewitt, E. & Ross, K. A.Abstract harmonic analyais, vol. 1 (Springer-Verlag, 1963).Google Scholar
(3)Moran, W.Isotone measures on locally compact groups. J. London Math. Soc. 5 (1972), 347355.CrossRefGoogle Scholar
(4)Pym, J. S.A note on the Kawada-into theorem. Proc. Edinburgh Math. Soc. 13 (1963), 295296.CrossRefGoogle Scholar
(5)Williamson, J. H.On theorems of Kawada and Wendel. Proc. Edinburgh Math. Soc. 11 (1958), 7177.CrossRefGoogle Scholar
(6)Williamson, J. H. Isotone measures 1948–1973. Proc. Int. Conf. Functional Analysis, Madras 1973. (Springer Lecture Notes no. 399 (1974).)CrossRefGoogle Scholar