Published online by Cambridge University Press: 24 October 2008
This paper investigates the ‘general position’ properties which ANR's may possess. The most important of these is the disjoint discs property of Cannon (5), which plays a vital role in recent striking characterizations of manifolds (5, 9, 12, 18, 19, 22). Also considered are the property Δ of Borsuk(2) (which ensures an abundance of dimension-preserving maps), and the vanishing of local homology groups up to a given dimension (cf. (9)). Our main results give relations between these properties, and clarify their behaviour under the stabilization operation of taking cartesian product with the real line. In the last section these results are applied to give partial solutions to questions about homogeneous ANR's.