No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
Let X be a compact connected homogeneous complex manifold, which is Kāhlerian and has the second Betti number equal to one: b2(X) = 1; dimcX ≥ 3.
It is known that these conditions imply the following: X is a projective-rational homogeneous manifold (see (3)); X has an ‘algebraic cell-decomposition’: the 2s-dimensional closed cells are s-dimensional irreducible algebraic sets in X and they form a basis for the 2s-homology group of X, s = 1, 2, …, dimcX (see (1)); there are no holomorphic maps of X on lower dimensional (normal) analytic spaces except constants (see (9)).