Published online by Cambridge University Press: 24 October 2008
Significance tests for several hypothetical discriminant functions have been developed by Williams (7,8) and considered further by the author (6). The test criteria consist of the factors in certain factorizations of the residual likelihood criterion, when the effect of the hypothetical discriminant functions has been eliminated. The independence and distributions of the factors can be seen by geometrical considerations, to be a consequence of the manner in which the factors are constructed in the sample space. In the case of a single hypothetical discriminant function Kshirsagar (5) has produced analytic proofs, by means of matrix transformations, of the independence and distributions of the factors. In this paper we shall give analytic proofs of the independence and distributions of the factors, given in sections 4 and 5 of the authors' paper (6), by extending Kshirsagar's proof to the case of several hypothetical discriminant functions.