Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T13:38:02.908Z Has data issue: false hasContentIssue false

The diffraction of an obliquely incident surface wave by a vertical barrier of finite depth

Published online by Cambridge University Press:  24 October 2008

T. R. Faulkner
Affiliation:
Department of Theoretical Mechanics, University Park, Nottingham

Extract

The effect of a vertical barrier, fixed in an infinitely deep sea, on normally incident surface waves of small amplitude was first considered by Ursell (1) and generalizations which retain the two-dimensional aspects of the problem have subsequently been considered by John (2) and Lewin (3). The fluid motion due to the flexural vibrations of a barrier of finite depth has been considered by Alblas (4), the motion in this case being three-dimensional.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Ursell, F.Proc. Cambridge Philos. Soc. 43 (1947), 374382.CrossRefGoogle Scholar
(2)John, F.Comm. Pure Appl. Math. 1 (1948), 149200.CrossRefGoogle Scholar
(3)Lewin, M.J. Math. Phys. 42 (1963), 287300.CrossRefGoogle Scholar
(4)Alblas, J. B.Appl. Sci. Res. A7 (19571958), 224236.Google Scholar
(5)Williams, W. E.Proc. Cambridge Philos. Soc. 62 (1966), 507509.CrossRefGoogle Scholar
(6)Jones, D. S.Quart. J. Math. 2, 3 (1952), 189196.CrossRefGoogle Scholar
(7)Stoker, J. J.Water waves (Interscience; New York, 1957).Google Scholar
(8)Williams, W. E.Proc. Cambridge Philos. Soc. 61 (1965), 275278.CrossRefGoogle Scholar
(9)Noble, B.Methods based on the Wiener–Hopf technique (Pergamon, 1958).Google Scholar
(10)Faulkner, T. R.J. Inst. Math. Applic. 1 (1966), 149163.CrossRefGoogle Scholar
(11)Jones, D. S.Proc. Cambridge Philos. Soc. 48 (1952), 118134.CrossRefGoogle Scholar
(12)Whittaker, E. T. and Watson, G. N.Modern analysis (Cambridge, 1902).Google Scholar
(13)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(14)Erdelyi, A. et al. Higher transcendental functions (Cambridge, 1960).Google Scholar
(15)Whittaker, E. T.Bull. Amer. Math. Soc. (2), 10 (1903-1904), 125134.CrossRefGoogle Scholar