Published online by Cambridge University Press: 24 October 2008
We introduce and study a new metric on denned by
where is the space of probability measures on ℝk and where g: ℝk→ is a probability density satisfying certain mild conditions. The metric dg, relatively easy to compute, is shown to have useful and interesting properties not enjoyed by some other metrics on . In particular, letting pn denote the nth empirical measure for P, it is shown that under appropriate conditions satisfies a compact law of the iterated logarithm, converges in probability to the supremum of a Gaussian process, and has a useful stochastic integral representation.