Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:51:22.816Z Has data issue: false hasContentIssue false

Simulating Kinetic Processes in Time and Space on aLattice

Published online by Cambridge University Press:  05 October 2011

J. P. Gill*
Affiliation:
Department of Biology
K. M. Shaw
Affiliation:
Department of Biology
B. L. Rountree
Affiliation:
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550
C. E. Kehl
Affiliation:
Department of Biology
H. J. Chiel
Affiliation:
Department of Biology Department of Neurosciences Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We have developed a chemical kinetics simulation that can be used as both an educationaland research tool. The simulator is designed as an accessible, open-source project thatcan be run on a laptop with a student-friendly interface. The application can potentiallybe scaled to run in parallel for large simulations. The simulation has been successfullyused in a classroom setting for teaching basic electrochemical properties. We have shownthat this can be used for simulating fundamental molecular and chemical processes and evensimplified models of predator–prey interactions. By giving the simulated entities spatialextent in the lattice, the particles do not interpenetrate, and clusters of particles canspatially exclude one another. Our simulation demonstrates that spatial inhomogeneityleads to different results than those that are obtained by using standard ordinarydifferential equation models, as previously reported.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular biology of the cell. Garland Science, New York, 4th ed., 2002.
P. Atkins, J. de Paula. Physical chemistry. W. H. Freeman, New York, 7th ed., 2002.
M. Branch, S. Wright. The Nernst/Goldman equation simulator. http://www.nernstgoldman.physiology.arizona.edu/.
Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. M., Karplus, M.. CHARMM: the biomolecular simulation program. J. Comput. Chem., 30 (2009), No. 10, 15451614. CrossRefGoogle ScholarPubMed
Casanova, H., Berman, F., Bartol, T., Gokcay, E., Sejnowski, T., Birnbaum, A., Dongarra, J., Miller, M., Ellisman, M., Faerman, M., Obertelli, G., Wolski, R., Pomerantz, S., Stiles, J.. The virtual instrument: support for grid-enabled MCell simulations. Int. J. High Perform. C., 18 (2004), No. 1, 317. CrossRefGoogle ScholarPubMed
P. S. di Fenizio, P. Dittrich, W. Banzhaf. Spontaneous formation of proto-cells in an universal artificial chemistry on a planar graph. In: J. Keleman, P. Sosik, editors. Advances in Artificial Life. 6th European Conference, ECAL 2001, 2001 Sep 10–14, Prague, Czech Republic. Lect. Notes Comput. Sc., 2159 (2001), 206–215. CrossRef
Dittrich, P., Ziegler, J., Banzhaf, W.. Artificial chemistries - a review. Artif. Life, 7 (2001), No. 3, 225275. CrossRefGoogle ScholarPubMed
Einstein, A.. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys.-Berlin, 17 (1905), 549560. CrossRefGoogle Scholar
B. M. Frezza. Deterministic versus stochastic chemical kinetics. http://demonstrations.wolfram.com/DeterministicVersusStochasticChemicalKinetics/.
B. M. Frezza. Michaelis-Menten enzyme kinetics and the steady-state approximation. http://demonstrations.wolfram.com/MichaelisMentenEnzymeKineticsAndTheSteadyStateApproximation/.
Galán, R. F.. Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience. Phys. Rev. E, 80 (2009), No. 3, 036113. CrossRefGoogle ScholarPubMed
Grima, R., Schnell, S.. Modelling reaction kinetics inside cells. Essays Biochem., 45 (2008), 4156. CrossRefGoogle ScholarPubMed
W. S. C. Gurney, R. M. Nisbet. Ecological dynamics. Oxford Univ. Press, New York, 1998.
B. Hille. Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA, 3rd ed., 2001.
Hutton, T. J.. Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif. Life, 13 (2007), No. 1, 1130. CrossRefGoogle Scholar
D. Johnston, S. M. Wu. Foundations of cellular neurophysiology. MIT Press, Cambridge, 1994.
E. R. Kandel, J. H. Schwartz, T. M. Jessell. Principles of neural science. McGraw-Hill, 4th ed., 2000.
Kang, K., Redner, S.. Fluctuation-dominated kinetics in diffusion-controlled reactions. Phys. Rev. A, 32 (1985), No. 1, 435447. CrossRefGoogle ScholarPubMed
Z. Konkoli. Diffusion controlled reactions, fluctuation dominated kinetics, and living cell biochemistry. In: S. B. Cooper, V. Danors, editors. Computational Models from Nature. 5th Workshop on Developments in Computational Models, DCM 2009, 2009 Jul 11, Rhodes, Greece. EPTCS, 9 (2009), 98–107.
Kutner, R.. Chemical diffusion in the lattice gas of non-interacting particles. Phys. Lett. A, 81 (1981), No. 4, 239240. CrossRefGoogle Scholar
Leyvraz, F., Redner, S.. Spatial structure in diffusion-limited two-species annihilation. Phys. Rev. A, 46 (1992), No. 6, 31323147. CrossRefGoogle ScholarPubMed
McMullin, B.. Thirty years of computational autopoiesis: a review. Artif. Life, 10 (2004), No. 3, 277295. CrossRefGoogle ScholarPubMed
Nelson, P. H., Kaiser, A. B., Bibby, D. M.. Simulation of diffusion and adsorption in zeolites. J. Catal., 127 (1991), No. 1, 101112. CrossRefGoogle Scholar
Ovchinnikov, A. A., Zeldovich, Y. B.. Role of density fluctuations in bimolecular reaction kinetics. Chem. Phys., 28 (1978), 215218. CrossRefGoogle Scholar
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., Schulten, K.. Scalable molecular dynamics with NAMD. J. Comput. Chem., 26 (2005), No. 16, 17811802. CrossRefGoogle ScholarPubMed
Schnell, S., Turner, T. E.. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog. Biophys. Mol. Bio., 85 (2004), 235260. CrossRefGoogle ScholarPubMed
Suzuki, H.. An approach toward emulating molecular interaction with a graph. Aust. J. Chem., 59 (2006), No. 12, 869873. CrossRefGoogle Scholar
Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., Miyoshi, F., Naito, Y., Nakayama, Y., Tomita, M.. E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics, 19 (2003), No. 13, 17271729. CrossRefGoogle ScholarPubMed
Toussaint, D., Wilczek, F.. Particle-antiparticle annihilation in diffusive motion. J. Chem. Phys., 78 (1983), No. 5, 26422647. CrossRefGoogle Scholar
Trefil, J., Morowitz, H. J., Smith, E.. The origin of life. Am. Sci., 97 (2009), No. 3, 206213. CrossRefGoogle Scholar
Varela, F., Maturana, H., Uribe, R.. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems, 5 (1974), No. 4, 187196. CrossRefGoogle ScholarPubMed
T. Weisstein. Michaelis-Menten enzyme kinetics. http://bioquest.org/esteem/{\penalty 0}esteem_details.php?product_id=246.
T. Weisstein, R. Salinas, J. R. Jungck. Two-species model. http://bioquest.org/esteem/{\penalty 0}esteem_details.php?product_id=203.