Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:07:42.610Z Has data issue: false hasContentIssue false

Waves of Autocrine Signaling in PatternedEpithelia

Published online by Cambridge University Press:  27 July 2010

C. B. Muratov*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology Newark, NJ 07102, USA
S. Y. Shvartsman
Affiliation:
Department of Chemical Engineering and Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA
*
* Corresponding author. E-mail:[email protected]
Get access

Abstract

A biophysical model describing long-range cell-to-cell communication by a diffusiblesignal mediated by autocrine loops in developing epithelia in the presence of amorphogenetic pre-pattern is introduced. Under a number of approximations, the modelreduces to a particular kind of bistable reaction-diffusion equation with strongheterogeneity. In the case of the heterogeneity in the form of a long strip a detailedanalysis of signal propagation is possible, using a variational approach. It is shown thatunder a number of assumptions which can be easily verified for particular sets of modelparameters, the equation admits a unique (up to translations) variational traveling wavesolution. A global bifurcation structure of these solutions is investigated in a number ofparticular cases. It is demonstrated that the considered setting may provide a robustdevelopmental regulatory mechanism for delivering chemical signals across large distancesin developing epithelia.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronson, D. G., Weinberger, H. F.. Multidimensional diffusion arising in population genetics. Adv. Math., 30 (1978), 3358.CrossRefGoogle Scholar
Ashe, H. L., Briscoe, J.. The interpretation of morphogen gradients. Development, 133 (2006), 385394.CrossRefGoogle ScholarPubMed
H. Berestycki, F. Hamel. Generalized travelling waves for reaction-diffusion equations. Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101–123. Amer. Math. Soc., Providence, RI, 2007.
J. D. Buckmaster, G. S. S. Ludford. Theory of laminar flames. Cambridge University Press, Cambridge, 1982.
Chapuisat, G.. Existence and nonexistence of curved front solution of a biological equation. J. Differential Equations 236 (2007), 237279.CrossRefGoogle Scholar
G. Chapuisat and R. Joly, Asymptotic profiles for a travelling front solution of a biological equation. Preprint.
G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser, Boston, 1993.
P. C. Fife.Mathematical Aspects of Reacting and Diffusing Systems. Springer-Verlag, Berlin, 1979.
Freeman, M.. Feedback control of intercellular signalling in development. Nature, 408 (2000), 313319.CrossRefGoogle ScholarPubMed
D. Gilbarg, N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983.
Heberlin, U., Moses, K.. Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive. Cell, 81 (1995), 987990.CrossRefGoogle Scholar
Kazmierczak, B., Volpert, V.. Travelling calcium waves in systems with non-diffusing buffers. Math. Models Methods Appl. Sci., 18 (2008), 883912.CrossRefGoogle Scholar
Lembong, J., Yakoby, N., Shvartsman, S. Y.. Pattern formation by dynamically interacting network motifs. Proc. Natl. Acad. Sci. USA, 106 (2009), 3213-3218.CrossRefGoogle Scholar
Lucia, M., Muratov, C. B., Novaga, M.. Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders. Arch. Rational Mech. Anal., 188 (2008), 475508.CrossRefGoogle Scholar
A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems, volume 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel, 1995.
A. Martinez-Arias, A. Stewart. Molecular principles of animal development. Oxford University Press, New York, 2002.
Muratov, C. B.. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete Cont. Dyn. S., Ser. B, 4 (2004), 867892. CrossRefGoogle Scholar
Muratov, C. B., Novaga, M.. Front propagation in infinite cylinders. I. A variational approach. Comm. Math. Sci., 6 (2008), 799826.CrossRefGoogle Scholar
Muratov, C. B., Posta, F., Shvartsman, S. Y.. Autocrine signal transmission with extracellular ligand degradation. Phys. Biol., 6 (2009), 016006.CrossRefGoogle ScholarPubMed
Muratov, C. B., Shvartsman, S. Y.. Signal propagation and failure in discrete autocrine relays. Phys. Rev. Lett., 93 (2004), 118101.CrossRefGoogle ScholarPubMed
Přibyl, M., Muratov, C. B., Shvartsman, S. Y.. Discrete models of autocrine cell communication in epithelial layers. Biophys. J., 84 (2003), 36243635.CrossRefGoogle ScholarPubMed
Přibyl, M., Muratov, C. B., Shvartsman, S. Y.. Long-range signal transmission in autocrine relays. Biophys. J., 84 (2003), 883896.CrossRefGoogle ScholarPubMed
N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford Univ. Press, Oxford, 1997.
Tabata, T., Takei, Y.. Morphogens, their identification and regulation. Development, 131 (2004), 703712.CrossRefGoogle ScholarPubMed
Tyson, J. J., Chen, K., Novak, B.. Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol., 2 (2001), 908916.CrossRefGoogle ScholarPubMed
A. I. Volpert, V. A. Volpert, V. A. Volpert. Traveling wave solutions of parabolic systems. AMS, Providence, 1994.
Volpert, V., Volpert, A.. Existence of multidimensional travelling waves in the bistable case. C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 245250.CrossRefGoogle Scholar
Wiley, H. S., Shvartsman, S. Y., Lauffenburger, D. A.. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol., 13 (2003), 4350.CrossRefGoogle ScholarPubMed
L. Wolpert, R. Beddington, T. Jessel, P. Lawrence, E. Meyerowitz. Principles of Development. Oxford University Press, Oxford, 1998.
Xin, J.. Front propagation in heterogeneous media. SIAM Review, 42 (2000), 161230.CrossRefGoogle Scholar
Yakoby, N., Lembong, J., Schüpbach, T., Shvartsman, S. Y. Drosophila eggshell is patterned by sequential action of feedforward and feedback loops. Development, 135 (2008), 343351.CrossRefGoogle Scholar