Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:21:06.335Z Has data issue: false hasContentIssue false

Unraveling the Tangled Complexity of DNA: CombiningMathematical Modeling and Experimental Biology to Understand Replication, Recombinationand Repair

Published online by Cambridge University Press:  05 October 2011

S. Robic*
Affiliation:
Department of Biology, Agnes Scott College, Decatur, GA 30030, USA
J. R. Jungck
Affiliation:
Department of Biology, Beloit College, Beloit, WI 53511, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

How does DNA, the molecule containing genetic information, change its three-dimensionalshape during the complex cellular processes of replication, recombination and repair? Thisis one of the core questions in molecular biology which cannot be answered without helpfrom mathematical modeling. Basic concepts of topology and geometry can be introduced inundergraduate teaching to help students understand counterintuitive complex structuraltransformations that occur in every living cell. Topoisomerases, a fascinating class ofenzymes involved in replication, recombination and repair, catalyze a change in DNAtopology through a series of highly coordinated mechanistic steps. Undergraduate biologyand mathematics students can visualize and explore the principles of topoisomerase actionby using easily available materials such as Velcro, ribbons, telephone cords, zippers andtubing. These simple toys can be used as powerful teaching tools to engage students inhands-on exploration with the goal of learning about both the mathematics and the biologyof DNA structure.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Elrod, W. Stansfield. Schaum’s Outline of Genetics, Fifth Edition. McGraw-Hill, New York, 2010.
R. Brooker, E. Widmaier, L. Graham, P. Stiling. Biology, Second Edition. McGraw-Hill, New York, 2010.
N. Campbell, N. A. Reece, J. B. Jackson, R. B. Cain, M. L. Urry, L. A. Wasserman, S. A. Minorsky. Biology, Ninth Edition. Benjamin Cummings, San Diego, 2011.
P. Karp. Cell and Molecular Biology: Concepts and Experiments, Fifth Edition. Wiley, New York, 2007.
W. H. Elliott, D. C. Elliott. Biochemistry and Molecular Biology, Fourth Edition. Oxford University Press, Oxford, U.K., 2009.
Sumners, D. W., Ernst, C., Spengler, S. J., Cozzarelli, N. R.. Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys. 28 (1995), 253313. CrossRefGoogle ScholarPubMed
N. R. Cozzarelli, J. C. Wang. DNA Topology and Its Biological Effects. Cold Spring Harbor Monograph Series 20, 1990.
Balliano, G., Milla, P.. Topology of DNA: When manipulation supports the lack of “space-filling" imagination. Biochemical Education, 25 (1997), 209210. CrossRefGoogle Scholar
Jungck, J. R., Gaff, H., Weisstein, A. E.. Mathematical manipulative models: In defense of “Beanbag Biology". CBE Life Sci Educ. 9 (2010), 201211. CrossRefGoogle Scholar
Roberts, J. R., Hagedorn, E., Dillenburg, P., Patrick, M., Herman, T.. Physical models enhance molecular three-dimensional literacy in an introductory biochemistry course*. Biochemistry and Molecular Biology Education, 33 (2005), 105110. CrossRefGoogle Scholar
Herman, T., Morris, J., Colton, S., Batiza, A., Patrick, M., Franzen, M., Goodsell, D. S.. Tactile teaching: exploring protein structure/function using physical models. Biochem. Mol. Biol. Educ. 34 (2006), 247254. CrossRefGoogle ScholarPubMed
“kitefrog". Möbius Strip: New Discoveries. 2011 (2008).
E. Babaev, Intuitive Chemical Topology Concepts (Chapter 5), in: D. Bonchev, R. Rouvray (Eds.), Chemical Topology: Introduction and Fundamentals. Gordon and Breach, 1999, pp. 167–264.
A. D. Bates, A. Maxwell. DNA Topology. Oxford University Press, New York, 2005.
Boles, T. C., White, J. H., Cozzarelli, N. R.. Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213 (1990), 931951. CrossRefGoogle ScholarPubMed
Hardy, C. D., Crisona, N. J., Stone, M. D., Cozzarelli, N. R.. Disentangling DNA during replication: a tale of two strands. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359 (2004), 3947. CrossRefGoogle ScholarPubMed
Fogg, J. M., Kolmakova, N., Rees, I., Magonov, S., Hansma, H., Perona, J. J., Zechiedrich, E. L.. Exploring writhe in supercoiled minicircle DNA. J. Phys. Condens Matter. 18 (2006), S145S159. CrossRefGoogle ScholarPubMed
Arsuaga, J., Vazquez, M., McGuirk, P., Trigueros, S., Sumners, D., Roca, J.. DNA knots reveal a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 91659169. CrossRefGoogle ScholarPubMed
H. Willenbrock, D. W. Ussery. Chromatin architecture and gene expression in Escherichia coli. Genome Biol. 5 (2004), 252.
White, J. H.. Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics. 91 (1969), 693728. CrossRefGoogle Scholar
Bauer, W. R., Crick, F. H., White, J. H.. Supercoiled DNA. Sci. Am. 243 (1980), 100113. Google ScholarPubMed
Eckdahl, T. T.. Investigating DNA supercoiling. The American Biology Teacher. 61 (1999), 214216. CrossRefGoogle Scholar
J. M. Fogg, D. J. Catanese, G. L. Randall, M. C. Swick, L. Zechiedrich. Differences between positively and negatively supercoiled DNA that topoisomerases may distinguish (Chapter), in Mathematics of DNA Structure, Function and Interactions The IMA Volumes in Mathematics and its Applications, 150 (2009), 73–121.
Witz, G., Stasiak, A.. DNA supercoiling and its role in DNA decatenation and unknotting. Nucl. Acids Res. 38 (2010), 21192133. CrossRefGoogle ScholarPubMed
M. D. F. Kamenetskii. Unraveling DNA: The most important molecule of life, John Wiley & Sons, 1997.
A. Sossinsky, G. Weiss. Knots: Mathematics with a twist. Harvard University Press, 2002.
Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D., Cozzarelli, N. R.. Topological challenges to DNA replication: Conformations at the fork. Proc. Natl. Acad. Sci. USA 98 (2001), 82198226. CrossRefGoogle ScholarPubMed
Kauffman, L. H., Lambropoulou, S.. On the classification of rational tangles. Advances in Applied Mathematics. 33 (2004), 199237. CrossRefGoogle Scholar
C. Adams. The Knot book: An elementary introduction to the mathematical theory of knots. W.H. Freeman, 1994.
Darcy, I. K., Scharein, R. G., Stasiak, A.. 3D visualization software to analyze topological outcomes of topoisomerase reactions. Nucleic Acids Res. 36 (2008), 35153521. CrossRefGoogle ScholarPubMed
Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millett, K., Ocneanu, A.. A new polynomial invariant of knots and links. Bull.Amer.Math.Soc.(N.S.). 12 (1985), 239246. CrossRefGoogle Scholar
Griffith, J. D., Nash, H. A.. Genetic rearrangement of DNA induces knots with a unique topology: implications for the mechanism of synapsis and crossing-over. Proc. Natl. Acad. Sci. USA 82 (1985), 31243128. CrossRefGoogle ScholarPubMed
Trigueros, S., Arsuaga, J., Vazquez, M. E., Sumners, D. W., Roca, J.. Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29 (2001), E677. CrossRefGoogle ScholarPubMed
Nitiss, J. L.. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 9 (2009), 338350. CrossRefGoogle ScholarPubMed
Corbett, K. D., Berger, J. M.. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33 (2004), 95118. CrossRefGoogle ScholarPubMed
Forterre, P., Gadelle, D.. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Research. 37 (2009), 679692. CrossRefGoogle ScholarPubMed
Berger, J. M., Gamblin, S. J., Harrison, S. C., Wang, J. C.. Structure and mechanism of DNA topoisomerase II. Nature. 379 (1996), 225232. CrossRefGoogle ScholarPubMed
Austin, C. A., Fisher, L. M.. DNA topoisomerases: enzymes that change the shape of DNA. Sci. Prog. 74 (1990), 147161. Google ScholarPubMed
Champoux, J. J.. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70 (2001), 369413. CrossRefGoogle ScholarPubMed
Roca, J.. The mechanisms of DNA topoisomerases. Trends Biochem. Sci. 20 (1995), 156160. CrossRefGoogle ScholarPubMed
Blattner, F. R., Plunkett III, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., Shao, Y.. The complete genome sequence of Escherichia coli K-12. Science. 277 (1997), 14531462. CrossRefGoogle ScholarPubMed
von Hippel, P. H., Delagoutte, E.. Macromolecular complexes that unwind nucleic acids. Bioessays. 25 (2003), 11681177. CrossRefGoogle ScholarPubMed
Worcel, A., Strogatz, S., Riley, D.. Structure of chromatin and the linking number of DNA. Proc. Natl. Acad. Sci. USA 78 (1981), 14611465. CrossRefGoogle ScholarPubMed
Nicholl, L. A. A., Nicholl, D. S. T.. Modelling the Eukaryotic chromosome: A stepped approach. Journal of Biological Education. 21 (1987), 99103. CrossRefGoogle Scholar
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., Dekker, J.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326 (2009), 289293. CrossRefGoogle ScholarPubMed
Grosberg, A. Y., Nechaev, S. K., Shakhnovich, E. I.. The role of topological constraints in the kinetics of collapse of macromolecules. J.Phys.France. 49 (1988), 20952100. CrossRefGoogle Scholar
M. Buenemann, P. Lenz. A geometrical model for DNA organization in bacteria. PLoS ONE. 5 (2010), e13806.
Shapiro, T. A., Englund, P.T.. The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49 (1995), 117143. CrossRefGoogle ScholarPubMed
Chen, J., Rauch, C. A., White, J. H., Englund, P. T., Cozzarelli, N. R.. The Topology of the Kinetoplastic DNA nework. Cell, 80 (1995), 6169. CrossRefGoogle Scholar
Lukes, J., Lys Guilbride, D., Votypka, J., Zikova, A., Benne, R., Englund, P. T.. Kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 1 (2002), 495502. CrossRefGoogle ScholarPubMed
Hatfield, G. W., Benham, C. J.. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36 (2002), 175203. CrossRefGoogle Scholar
Vologodskii, A., Cozzarelli, N. R.. Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70 (1996), 25482556. CrossRefGoogle ScholarPubMed
Rybenkov, V. V., Ullsperger, C., Vologodskii, A. V., Cozzarelli, N. R.. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science. 277 (1997), 690693. CrossRefGoogle ScholarPubMed
Vologodskii, A.. Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res. 37 (2009), 31253133. CrossRefGoogle ScholarPubMed
Neuman, K. C.. Single-molecule measurements of DNA topology and topoisomerases. J. Biol. Chem. 285 (2010), 1896718971. CrossRefGoogle ScholarPubMed
N. Sonnenschein, M Geertz, Muskhelishvili, G., Hütt, M.. Analog regulation of metabolic demand. MBC Systems Biology 5 (2011), 40-52. Google Scholar
R. Messer, P. Staffin. Topology now! Math Assoc. of America, 2006.