Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T04:11:55.903Z Has data issue: false hasContentIssue false

[no title]

Published online by Cambridge University Press:  01 August 2016

D. G. Rogers*
Affiliation:
Halewood Cottage, The Green, Croxley Green WD3 3HT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Correspondence
Copyright
Copyright © The Mathematical Association 2000

References

1. Trenkler, M. Magic rectangles, Math. Gaz. 83 (1999) pp. 102105.Google Scholar
2. Harmuth, T. Über magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) pp. 283313.Google Scholar
3. Harmuth, T. Über magische Rechteche mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) pp. 413417.Google Scholar
4. Freeman, G. H. Magic square designs, Encyclopedia of statistical sciences, Vol. 5, (Wiley, New York, NY, 1985) pp. 173174.Google Scholar
5. Phillips, J. P. N. Methods of constructing one way and factorial designs balanced for trend, Appl. Statist., 17 (1968) pp. 162170.Google Scholar
6. Phillips, J. P. N. A simple method of constructing certain magic rectangles of even order, Math. Gaz. 52 (1968) pp. 912.Google Scholar
7. Bier, T. and Kleinschmidt, A. Centrally symmetric and magic rectangles, Discrete Math 176 (1997) pp. 2942.Google Scholar
8. Bier, T. and Rogers, D. G. Balanced magic rectangles, European J. Combin. 14 (1993) pp. 285299.CrossRefGoogle Scholar
9. Jacroux, M. A. A note on constructing magic rectangles, Ars Comb. 36 (1993) pp. 335340.Google Scholar