Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T21:09:57.681Z Has data issue: false hasContentIssue false

GROWTH AND INEQUALITY: MODEL EVALUATION BASED ON AN ESTIMATION-CALIBRATION STRATEGY

Published online by Cambridge University Press:  01 September 2008

Hyeok Jeong*
Affiliation:
University of Southern California
Robert M. Townsend
Affiliation:
University of Chicago
*
Address correspondence to: Hyeok Jeong, Department of Economics, University of Southern California, 3620 S. Vermont Ave., Kaprielian Hall Room 300, Los Angeles, CA 90089, USA; e-mail: [email protected].

Abstract

This paper evaluates two well-known models of growth with inequality that have explicit micro underpinnings related to household choice. With incomplete markets or transactions costs, wealth can constrain investment in business and the choice of occupation and also constrain the timing of entry into the formal financial sector. Using the Thai Socio-Economic Survey (SES), we estimate the distribution of wealth and the key parameters that best fit cross-sectional data on household choices and wealth. We then simulate the model economies for two decades at the estimated initial wealth distribution and analyze whether the model economies at those micro-fit parameter estimates can explain the observed macro and sectoral aspects of income growth and inequality change. Both models capture important features of Thai reality. Anomalies and comparisons across the two distinct models yield specific suggestions for improved research on the micro foundations of growth and inequality.

Type
Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aghion, Philippe and Bolton, Patrick (1997) A theory of trickle-down growth and development. Review of Economic Studies 5 (64), 151172.Google Scholar
Banerjee, Abhijit and Duflo, Esther (2000) Inequality and Growth: What Can the Data Say? NBER Working Paper 7793.CrossRefGoogle Scholar
Banerjee, Abhijit and Newman, Andrew F. (1993) Occupational choice and the process of development. Journal of Political Economy 5 (101), 274298.Google Scholar
Bourguignon, François (2002) The Distributional Effects of Growth: Case Studies vs. Cross-country Regression. DELTA Working Paper 2002–23.Google Scholar
Browning, Martin, Hansen, Lars P., and Heckman, James J. (1999) Micro data and general equilibrium models. In Taylor, John B. and Woodford, Michael (eds.), Handbook of macroeconomics, Vol. 1A. Amsterdam: North Holland.Google Scholar
Deininger, K. and Squire, L. (1996) A new data set measuring income inequality. World Bank Economic Review 5 (10), 565591.CrossRefGoogle Scholar
Frisch, Ragnar (1933) Editorial. Econometrica 5 (1), 14.Google Scholar
Gine, Xavier and Townsend, Robert M. (2004) Evaluation of financial liberalization: A general equilibrium model with constrained occupational choice. Journal of Development Economics 74, 269307.Google Scholar
Granger, Clive W.J. (1999) Empirical modeling in economics: Specification and evaluation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Greenwood, Jeremy and Jovanovic, Boyan (1990) Financial development, growth, and the distribution of income. Journal of Political Economy 5 (98), 10761107.CrossRefGoogle Scholar
Hansen, Lars P. and Heckman, James J. (1996) The empirical foundations of calibration. Journal of Economic Perspectives 5 (10), 87104.CrossRefGoogle Scholar
Jeong, Hyeok (2000) Sources of Kuznets Dynamics in Thailand. Ph.D. dissertation. University of Chicago.Google Scholar
Jeong, Hyeok (in press) Assessment of relationship between growth and inequality: Micro evidence from thailand. Macroeconomic Dynamics.Google Scholar
Jeong, Hyeok and Kim, Yong (2006) Complementarity and Transition to Modern Economic Growth. IEPR Working Paper Series 06.44.Google Scholar
Jeong, Hyeok and Townsend, Robert M. (2007) Sources of TFP growth: Occupational choice and financial deepening. Economic Theory 32 (1), 179221.CrossRefGoogle Scholar
Kuznets, Simon (1955) Economic growth and income inequality. American Economic Review, Papers and Proceedings 5 (45), 128.Google Scholar
Kydland, F.E. and Prescott, Edward. C. (1982) Time to build and aggregate fluctuations. Econometrica 5 (50), 13451370.CrossRefGoogle Scholar
Kydland, F.E. and Prescott, Edward. C. (1996) The computational experiment: An econometric tool. Journal of Economic Perspectives 5 (10), 6985.CrossRefGoogle Scholar
Lloyd-Ellis, Hew and Bernhardt, Dan (2000) Enterprise, inequality, and economic development. Review of Economic Studies 5 (67), 147168.CrossRefGoogle Scholar
Mookherjee, Dilip and Shorrocks, Anthony F. (1982) A decomposition analysis of the trend in UK income inequality. Economic Journal 5 (92), 886902.Google Scholar
Oreskes, Naomi, Shrader-Frechette, Kristin, and Belitz, Kenneth (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 5 (263), 641646.Google Scholar
Smirnov, N. (1948) Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics 5 (19/2), 279281.CrossRefGoogle Scholar
Townsend, Robert M. (1978) Intermediation with costly bilateral exchange. Review of Economic Studies 5 (45), 417425.Google Scholar
Townsend, Robert M. and Ueda, Kenichi (2006) Transitional growth with increasing inequality and financial deepening. Review of Economic Studies 73 (1), 251293.Google Scholar