Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T19:00:55.543Z Has data issue: false hasContentIssue false

Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers

Published online by Cambridge University Press:  06 August 2009

Arne THELL
Affiliation:
The Biological Museums, Lund University, Östra Vallgatan 18-20, SE-223 61 Lund, Sweden. Email: [email protected]
Filip HÖGNABBA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-000 14University of Helsinki, Finland.
John A. ELIX
Affiliation:
Research School of Chemistry, Building 33, Australian National University, Canberra, ACT 0200, Australia.
Tassilo FEUERER
Affiliation:
Hamburg Univesity, Biozentrum Klein Flottbek, Department of Botany and Botanical Garden, Ohnhorststrasse 18, D-22609Germany.
Ingvar KÄRNEFELT
Affiliation:
The Biological Museums, Lund University, Östra Vallgatan 18-20, SE-223 61 Lund, Sweden. Email: [email protected]
Leena MYLLYS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-000 14University of Helsinki, Finland.
Tiina RANDLANE
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, Lai Street 38, 51005 Tartu, Estonia.
Andres SAAG
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, Lai Street 38, 51005 Tartu, Estonia.
Soili STENROOS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-000 14University of Helsinki, Finland.
Teuvo AHTI
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-000 14University of Helsinki, Finland.
Mark R. D. SEAWARD
Affiliation:
Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, Bradford, BD7 1DP, UK.

Abstract

Fourteen genera belong to a monophyletic core of cetrarioid lichens, Ahtiana, Allocetraria, Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Kaernefeltia, Masonhalea, Nephromopsis, Tuckermanella, Tuckermannopsis, Usnocetraria and Vulpicida. A total of 71 samples representing 65 species (of 90 worldwide) and all type species of the genera are included in phylogentic analyses based on a complete ITS matrix and incomplete sets of group I intron, β-tubulin, GAPDH and mtSSU sequences. Eleven of the species included in the study are analysed phylogenetically for the first time, and of the 178 sequences, 67 are newly constructed. Two phylogenetic trees, one based solely on the complete ITS-matrix and a second based on total information, are similar, but not entirely identical. About half of the species are gathered in a strongly supported clade composed of the genera Allocetraria, Cetraria s. str., Cetrariella and Vulpicida. Arctocetraria, Cetreliopsis, Kaernefeltia and Tuckermanella are monophyletic genera, whereas Cetraria, Flavocetraria and Tuckermannopsis are polyphyletic. The taxonomy in current use is compared with the phylogenetic results, and future, probable or potential adjustments to the phylogeny are discussed. The single non-DNA character with a strong correlation to phylogeny based on DNA-sequences is conidial shape. The secondary chemistry of the poorly known species Cetraria annae is analyzed for the first time; the cortex contains usnic acid and atranorin, whereas isonephrosterinic, nephrosterinic, lichesterinic, protolichesterinic and squamatic acids occur in the medulla. Notes on the anatomy of Cetraria annae and Flavocetraria minuscula are also provided.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U., Ekman, S., Grube, M., Mattsson, J.-E. & Wedin, M. (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99: 4249.CrossRefGoogle ScholarPubMed
Blanco, O., Crespo, A., Divakar, P. K., Elix, J. A., Hawksworth, D. L. & Lumbsch, H. T. (2004 a) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53: 959975.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Divakar, P. K., Esslinger, T. L., Hawksworth, D. L. & Lumbsch, H. T. (2004 b) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular data. Mycological Research 108: 873884.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Divakar, P. K., Elix, J. A. & Lumbsch, H. T. (2005) Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia 97: 150159.CrossRefGoogle ScholarPubMed
Blanco, O., Crespo, A., Ree, R. H. & Lumbsch, H. T. (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39: 5269.CrossRefGoogle ScholarPubMed
Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.CrossRefGoogle ScholarPubMed
Divakar, P. K., Crespo, A., Blanco, O. & Lumbsch, H. T. (2006) Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae, Ascomycota). Molecular Phylogenetics and Evolution 40: 448458.CrossRefGoogle ScholarPubMed
Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. (2005) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37: 3746.CrossRefGoogle Scholar
Egan, R. S. (1987) A fifth checklist of the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. Bryologist 90: 77173.CrossRefGoogle Scholar
Ekman, S. (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783797.CrossRefGoogle Scholar
Elix, J. A. (1993) Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae). Bryologist 96: 359383.CrossRefGoogle Scholar
Elix, J. A., Tønsberg, T. & Wardlaw, J. H. (2004) The structure of friesiic acid, a novel lichen substance from Hypocenomyce friesii. Bibliotheca Lichenologica 88: 103109.Google Scholar
Esslinger, T. L. (2003) Tuckermanella, a new cetrarioid genus in western North America. Mycotaxon 85: 135141.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes. Application to the identification mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Goward, T. (1985) Ahtiana, a new lichen genus in the Parmeliaceae. Bryologist 88: 367371.CrossRefGoogle Scholar
Hafellner, J. (1984) Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Nova Hedwigia 79: 241371. Vaduz: J. Cramer.Google Scholar
Henssen, A. & Jahns, H. M. (1974) Lichenes. Stuttgart: G. Thieme.Google Scholar
Kärnefelt, I. (1977 a) Masonhalea, a new lichen genus in the Parmeliaceae. Botaniska Notiser 130: 101107.Google Scholar
Kärnefelt, I. (1977 b) Three new species of brown fruticose Cetraria. Botaniska Notiser 130: 125129.Google Scholar
Kärnefelt, I. (1979) The brown fruticose species of Cetraria. Opera Botanica 46: 1150.Google Scholar
Kärnefelt, I. (1986) The genera Bryocaulon, Coelocaulon and Cornicularia and formerly associated taxa. Opera Botanica 86: 190.Google Scholar
Kärnefelt, I., Mattsson, J.-E. & Thell, A. (1992) Evolution and phylogeny of cetrarioid lichens. Plant Systematics and Evolution 183: 113160.CrossRefGoogle Scholar
Kärnefelt, I., Mattsson, J.-E. & Thell, A. (1993) The lichen genera Arctocetraria, Cetraria and Cetrariella (Parmeliaceae) and their presumed evolutionary affinities. Bryologist 96: 394404.CrossRefGoogle Scholar
Kärnefelt, I. & Thell, A. (1992) The evaluation of characters in lichenized families, exemplified with the alectorioid and some parmelioid genera. Plant Systematics and Evolution 180: 181204.CrossRefGoogle Scholar
Kärnefelt, I. & Thell, A. (1993) Chemical evolution in cetrarioid lichens. Bibliotheca Lichenologica 53: 115127.Google Scholar
Kärnefelt, I. & Thell, A. (1994) Sexual reproductive characters vs. morphological characters in lichen genera. Journal of the Hattori Botanical Laboratory 76: 207219.Google Scholar
Kärnefelt, I. & Thell, A. (1996) A new classification for the Dactylina/Dufourea complex. Nova Hedwigia 62: 487511.Google Scholar
Kärnefelt, I. & Thell, A. (2001) Delimitation of the genus Tuckermannopsis Gyeln. (Ascomycotina, Parmeliaceae) based on morphology and DNA sequences. Bibliotheca Lichenologica 78: 193209.Google Scholar
Kärnefelt, I., Thell, A., Randlane, T. & Saag, A. (1994) The genus Flavocetraria Kärnefelt & Thell (Parmeliaceae, Ascomycotina) and its affinities. Acta Botanica Fennica 150: 7986.Google Scholar
Kurokawa, S. & Lai, M. J. (1991) Allocetraria, a new lichen genus in the Parmeliaceae. Bulletin of the National Science Museum (Tokyo), Series B (Botany) 17: 5965.Google Scholar
Lai, M. J. 1980. Studies on the cetrarioid lichens in Parmeliaceae of East Asia (I). Quarterly Journal of the Taiwan Museum 33: 215229.Google Scholar
Lai, M. J. & Elix, J. A. (2002) A new species of Cetreliopsis (Ascomycotina, Parmeliaceae) from Thailand. Mycotaxon 84: 355360.Google Scholar
Lai, M. J., Qian, Z. G. & Xu, L. (2007) Synopsis of the cetrarioid lichen genera and species (Parmeliaceae, lichenized Ascomycotina) in China. Journal of the National Taiwan Museum 60: 4561.Google Scholar
Larget, B. & Simon, D. L. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of Phylogenetic trees. Molecular Biology and Evolution 16: 750759.CrossRefGoogle Scholar
Lumbsch, H. T., Schmitt, I., Mangold, A. & Wedin, M. (2007) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycological Research 111: 11331141.CrossRefGoogle ScholarPubMed
Mattsson, J.-E. (1993) A monograph of the genus Vulpicida (Parmeliaceae, Ascomycetes). Opera Botanica 119: 161.Google Scholar
Mattsson, J.-E. & Lai, M. J. (1993) Vulpicida, a new genus in Parmeliaceae (lichenized ascomycetes). Mycotaxon 46: 425428.Google Scholar
Müller [Argoviensis], J. (1891) Lichenologische Beiträge 35. Flora (Regensburg) 74: 371382.Google Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) β-tubulin, ITS and group I intron sequences challenge the species pair Physcia aipolia and P. caesia. Mycologia 93: 335343.CrossRefGoogle Scholar
Myllys, L., Stenroos, S. & Thell, A. (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and β-tubulin genes. Lichenologist 34: 237246.CrossRefGoogle Scholar
Obermayer, W. (2008) Fotografische Dokumentation einer ungewöhnlich reich fruchtenden Aufsammlung von Cetraria islandica (L.) Ach. [mit einem historischen Abriss zur Darstellung fertiler Thalli, Anmerkungen zur Gestalt der Pycnosporen und einigen Notizen zum Gebrauch des ‘Kramperltees’]. Mitteilungen des naturwissenschaftlichen Vereins für Steiermark 138: 113158.Google Scholar
Ohmura, Y. (2002) Phylogenetic evaluation of infrageneric groups of the genus Usnea based on ITS regions in rDNA. Journal of the Hattori Botanical Laboratory 92: 231243.Google Scholar
Ohmura, Y. & Kanda, H. (2004) Taxonomic status of section Neuropogon in the genus Usnea elucidated by morphological comparison and ITS rDNA sequences. Lichenologist 36: 217225.CrossRefGoogle Scholar
Oxner, A. N. (1933) Species Lichenum novae ex Asia. Journal du Cycle Botanique de l'Academie des Sciences d'Ukraine 2: 167172.Google Scholar
Prado, R. del, Ferencová, Z., Armas-Crespo, V., Amo de Paz, G., Cubas, P. & Crespo, A. (2007) The arachiform vacuolar body, an overlooked shared character in the ascospores of a large monophyletic group within Parmeliaceae (Xanthoparmelia clade, Lecanorales). Mycological Research 91: 455467.Google Scholar
Randlane, T. & Saag, A. (1998) Synopsis of the genus Nephromopsis (fam. Parmeliaceae, lichenized Ascomycota). Cryptogamie, Bryologie-Lichénologie 19: 175191.Google Scholar
Randlane, T. & Saag, A. (2000) Revision of the second updated world list of cetrarioid lichens. January 17, 2002. http://www.ut.ee/lichens/cetraria.htmlGoogle Scholar
Randlane, T. & Saag, A. (2003) Taxonomic notes on some cetrarioid lichens. Mycotaxon 87: 479487.Google Scholar
Randlane, T. & Saag, A. (2004) Distribution patterns of some primary and secondary cetrarioid species. Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses 34: 359376.Google Scholar
Randlane, T. & Saag, A. (2005) Distribution patterns of primary and secondary species in the genus Vulpicida. Folia Cryptogamica Estonica 41: 8996.Google Scholar
Randlane, T., Saag, A. & Obermayer, W. (2001) Cetrarioid lichens containing usnic acid from the Tibetan area. Mycotaxon 80: 389425.Google Scholar
Randlane, T., Saag, A. & Thell, A. (1997) A second updated world list of cetrarioid lichens. Bryologist 100: 109122.CrossRefGoogle Scholar
Randlane, T., Thell, A. & Saag, A. (1995) New data about the genera Cetrariopsis, Cetreliopsis and Nephromopsis (fam. Parmeliaceae, lichenized Ascomycotina). Cryptogamie, Bryologie-Lichénologie 16: 3560.Google Scholar
Rico, V. J., van den Boom, P. P. G. & Barrasa, J. M. (2005) Morphology, chemistry and distribution of Melanelia sorediella (Parmeliaceae) and similar species in the Iberian Peninsula. Lichenologist 37: 199215.CrossRefGoogle Scholar
Saag, A., Randlane, T., Thell, A. & Obermayer, W. (2002) Phylogenetic analysis of cetrarioid lichens with globose ascospores. Proceedings of the Estonian Academy of Sciences, Biology, Ecology 51: 103123.Google Scholar
Swofford, D. L. (1998) PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0b. Sunderland, Mass.: Sinauer Associates.Google Scholar
Thell, A. (1995 a) A new position of the Cetraria commixta group in Melanelia (Ascomycotina, Parmeliaceae). Nova Hedwigia 60: 407422.Google Scholar
Thell, A. (1995 b) Pycnoconidial types and their presence in cetrarioid lichens (Ascomycotina, Parmeliaceae). Cryptogamie, Bryologie-Lichénologie 16: 247256.Google Scholar
Thell, A. (1998) Phylogenetic relationships of some cetrarioid species in British Columbia with notes on Tuckermannopsis. Folia Cryptogamica Estonica 32: 113122.Google Scholar
Thell, A. (1999) Group I intron versus ITS sequences in phylogeny of cetrarioid lichens. Lichenologist 31: 441449.CrossRefGoogle Scholar
Thell, A., Feuerer, T., Elix, J. A. & Kärnefelt, I. (2006) A contribution to the phylogeny and taxonomy of Xanthoparmelia (Ascomycota, Parmeliaceae). Journal of the Hattori Botanical Laboratory 100: 797807.Google Scholar
Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L. & Stenroos, S. (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, betatubulin and GAPDH sequences. Mycological Progress 3: 297314.CrossRefGoogle Scholar
Thell, A. & Goward, T. (1996) The new cetrarioid genus Kaernefeltia and related groups in the Parmeliaceae (lichenized Ascomycotina). Bryologist 99: 125136.CrossRefGoogle Scholar
Thell, A., Goward, T., Randlane, T., Kärnefelt, I. & Saag, A. (1995 a) A revision of the North American lichen genus Ahtiana (Parmeliaceae). Bryologist 98: 596605.CrossRefGoogle Scholar
Thell, A., Mattsson, J.-E. & Kärnefelt, I. (1995 c) Lecanoralean ascus types in the lichenized families Alectoriaceae and Parmeliaceae. Cryptogamic Botany 5: 120127.Google Scholar
Thell, A. & Miao, V. (1998) Phylogenetic analysis of ITS and group I intron sequences from European and North American samples of cetrarioid lichens. Annales Botanici Fennici 35: 275286.Google Scholar
Thell, A., Randlane, T., Kärnefelt, I., Gao, X.-Q. & Saag, A. (1995 b) The lichen genus Allocetraria (Ascomycotina, Parmeliaceae). In Flechten Follmann. Contributions to Lichenology in Honour of Gerhard Follmann (Daniels, J. A., Schulz, M. & Peine, J., eds): 353370. Cologne: University of Cologne.Google Scholar
Thell, A., Randlane, T., Saag, A. & Kärnefelt, I. (2005) A new circumscription of the lichen genus Nephromopsis (Parmeliaceae, lichenized Ascomycetes). Mycological Progress 4: 303316.CrossRefGoogle Scholar
Thell, A., Søchting, U., Kärnefelt, I., Elix, J. A. & Sancho, L. G. (2007) Phylogeny of Himantormia – an Antarctic genus in the Parmeliaceae (lichenized ascomycetes). Bibliotheca Lichenologica 95: 95541.Google Scholar
Thell, A., Stenroos, S., Feuerer, T., Kärnefelt, I., Myllys, L. & Hyvönen, J. (2002) Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and β-tubulin sequences, morphology, anatomy and secondary chemistry. Mycological Progress 1: 335354.CrossRefGoogle Scholar
Thell, A., Stenroos, S. & Myllys, L. (2000) A DNA-study of the Cetraria aculeata and C. islandica groups. Folia Cryptogamica Estonica 36: 95106.Google Scholar
van den Boom, P. P. G. & Sipman, H. J. M. (1994) Cetraria obtusata comb. et stat nov., an overlooked lichen species from the central Alps. Lichenologist 26: 105112.CrossRefGoogle Scholar
White, T. J., Burns, T., Lee, S. & Taylor, J. W. (1991) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar
Wirtz, N., Printzen, C., Sancho, L. G. & Lumbsch, H. T. (2006) The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon 55: 367376.CrossRefGoogle Scholar
Zhurbenko, M. P., Laursen, G. A. & Walker, D. A. (2005) New and rare lichenicolous fungi and lichens from the North American Arctic. Mycotaxon 92: 201212.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR-primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar