Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T15:59:29.557Z Has data issue: false hasContentIssue false

The lifestyle of lichens in soil crusts

Published online by Cambridge University Press:  08 May 2018

T. G. Allan GREEN*
Affiliation:
Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
Ana PINTADO
Affiliation:
Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
Jose RAGGIO
Affiliation:
Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
Leopoldo Garcia SANCHO
Affiliation:
Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.

Abstract

Lichens are one of the common dominant biota in biological soil crusts (biocrusts), a community that is one of the largest in extent in the world. Here we present a summary of the main features of the lifestyle of soil crust lichens, emphasizing their habitat, ecophysiology and versatility. The soil crust is exposed to full light, often to high temperatures and has an additional water source, the soil beneath the lichens. However, despite the open nature of the habitat the lichens are active under shady and cooler conditions and avoid climate extremes of high temperature and light. In temperate and alpine habitats they can also be active for long periods, several months in some cases. They show a mixture of physiological constancy (e.g. similar activity periods and net photosynthetic rates) but also adaptations to the habitat (e.g. the response of net photosynthesis to thallus water content can differ for the same lichen species in Europe and the USA and some species show extensive rhizomorph development). Despite recent increased research, aspects of soil crust ecology, for example under snow, remain little understood.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belnap, J. (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35: 128135.CrossRefGoogle Scholar
Belnap, J., Büdel, B. & Lange, O. L. (2003) Biological soil crusts: characteristics and distribution. In Biological Soil Crusts: Structure, Function, and Management (J. Belnap & O. L. Lange, eds): 330. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Bowker, M. A., Belnap, J., Büdel, B., Sannier, C., Pietrasiak, N., Eldridge, D. J. & Rivera-Aguilar, V. (2016) Controls on distribution patterns of biological soil crusts at micro- to global scales. In Biological Soil Crusts: An Organizing Principle in Drylands (B. Weber, B. Büdel & J. Belnap, eds): 173197. Cham, Switzerland: Springer International.CrossRefGoogle Scholar
Büdel, B., Colesie, C., Green, T. G. A., Grube, M., Lázaro Suau, R., Loewen-Schneider, K., Maier, S., Peer, T., Pintado, A., Raggio, J., et al. (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation 23: 16391658.CrossRefGoogle ScholarPubMed
Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M. & Gallardo, A. (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant and Soil 333: 2134.CrossRefGoogle Scholar
Colesie, C., Green, T. G. A., Raggio, J. & Büdel, B. (2016) Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts – similar but different? Arctic, Antarctic, and Alpine Research 48: 449460.CrossRefGoogle Scholar
Colesie, C., Williams, L. & Büdel, B. (2017) Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability. Lichenologist 49: 483492.CrossRefGoogle Scholar
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O. & Pöschl, U. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459462.CrossRefGoogle Scholar
Farrar, J. F. (1976) Ecological physiology of the lichen Hypogymnia physodes. I. Some effects of constant water saturation. New Phytologist 77: 93103.CrossRefGoogle Scholar
Farrar, J. F. & Smith, D. C. (1976) Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytologist 77: 115125.CrossRefGoogle Scholar
Gehrke, C. (1999) Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 18441851.CrossRefGoogle Scholar
Green, T. G. A. (2017) Limits of photosynthesis in arid environments. In The Biology of Arid and Initial Soils (B. Steven, ed.): 123138. Berlin: De Gruyter.CrossRefGoogle Scholar
Green, T. G. A., Pintado, A. & Sancho, L. G. (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In Plant Desiccation Tolerance (U. Lüttge, E. Beck & D. Bartels, eds): 89120. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Henskens, F. L., Green, T. G. A. & Wilkins, A. (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Annals of Botany 110: 555563.CrossRefGoogle Scholar
Kershaw, K. A. (1985) Physiological Ecology of Lichens. Cambridge: Cambridge University Press.Google Scholar
Lange, O. L. (1953) Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140: 3997.Google Scholar
Lange, O. L. (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In Biological Soil Crusts: Structure, Function, and Management (J. Belnap & O. L. Lange, eds): 217240. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Lange, O. L. (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198: 5570.Google Scholar
Lange, O. L. & Green, T. G. A. (2003) Photosynthetic performance of a foliose lichen of biological soil-crust communities: long-term monitoring of the CO2 exchange of Cladonia convoluta under temperate habitat conditions. Bibliotheca Lichenologica 86: 257280.Google Scholar
Lange, O. L. & Green, T. G. A. (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142: 1119.CrossRefGoogle ScholarPubMed
Lange, O. L., Belnap, J., Reichenberger, H. & Meyer, A. (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192: 115.CrossRefGoogle Scholar
Lange, O. L., Belnap, J. & Reichenberger, H. (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology 12: 195202.CrossRefGoogle Scholar
Larcher, W. (1995) Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 3rd Edition. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Lázaro, R., Cantón, Y., Solé-Benet, A., Bevan, J., Alexander, R., Sancho, L. G. & Puigdefábregas, J. (2007) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102: 252266.CrossRefGoogle Scholar
Levitt, J. (1980) Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing and High Temperature Stresses. 2nd Edn. New York: Academic Press.Google Scholar
Li, X. R., Jia, X. H., Long, L. Q. & Zerbe, S. (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant and Soil 277: 375385.CrossRefGoogle Scholar
Mazor, G., Kidron, G. J., Vonshak, A. & Abeliovich, A. (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology 21: 121130.CrossRefGoogle Scholar
Pannewitz, S., Green, T. G. A., Scheidegger, C., Schlensog, M. & Schroeter, B. (2003 a) Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during the mid-austral summer. Polar Biology 26: 545551.CrossRefGoogle Scholar
Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. (2003 b) Are lichens active under snow in continental Antarctica? Oecologia 135: 3038.CrossRefGoogle Scholar
Pannewitz, S., Green, T. G. A., Maysek, K., Schlensog, M., Seppelt, R., Sancho, L. G. & Schroeter, B. (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science 17: 341352.CrossRefGoogle Scholar
Raggio, J., Pintado, A., Vivas, M., Sancho, L. G., Büdel, B., Colesie, C., Weber, B., Schroeter, B., Lázaro, R. & Green, T. G. A. (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: progressing towards a model to understand productivity. Biodiversity and Conservation 23: 18091826.CrossRefGoogle Scholar
Raggio, J., Green, T. G. A., Sancho, L. G., Pintado, A., Colesie, C., Weber, B. & Büdel, B. (2017) Metabolic activity duration can be effectively predicted from macroclimatic data for biological soil crust habitats across Europe. Geoderma 306: 1017.CrossRefGoogle Scholar
Ruprecht, U., Brunauer, G. & Türk, R. (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens . Biodiversity and Conservation 23: 17711785.CrossRefGoogle ScholarPubMed
Sancho, L. G., Belnap, J., Colesie, C., Raggio, J. & Weber, B. (2016) Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In Biological Soil Crusts: An Organizing Principle in Drylands (B. Weber, B. Büdel & J. Belnap, eds): 287304. Cham, Switzerland: Springer International.CrossRefGoogle Scholar
Sancho, L. G., Pintado, A., Navarro, F., Ramos, M., DePablo, M. A., Blanquer, J. M., Jose Raggio, R., Valladares, F. & Green, T. G. A. (2017) Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Scientific Reports 7: 5689.CrossRefGoogle ScholarPubMed
Schlensog, M., Green, T. G. A. & Schroeter, B. (2013) Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia 173: 5972.CrossRefGoogle ScholarPubMed
Souza-Egipsy, V., Ascaso, C. & Sancho, L. G. (2002) Water distribution within terricolous lichens: potential influence on soil water infiltration. Mycological Research 106: 13671374.CrossRefGoogle Scholar
Sun, W. Q. (2002) Methods for the study of water relations under desiccation stress. In Desiccation and Survival in Plants: Drying without Dying (M. Black & H. W. Pritchard, eds): 4791. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Vogel, S. (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitrage zur Biologie der Pflanzen 31: 45135.Google Scholar
Walters, C., Farrant, J. M., Pammenter, N. W. & Berjak, P. (2002) Desiccation stress and damage. In Desiccation and Survival in Plants: Drying without Dying (M. Black & H. W. Pritchard, eds): 263293. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Wang, X. P., Li, X. R., Xiao, H. L., Berndtsson, R. & Pan, Y. X. (2007) Effects of surface characteristics on infiltration patterns in an arid shrub desert. Hydrological Processes 21: 7279.CrossRefGoogle Scholar
Weber, B., Büdel, B. & Belnap, J. (eds) (2016) Biological Soil Crusts: An Organizing Principle in Drylands. Cham, Switzerland: Springer International.CrossRefGoogle Scholar
Williams, L., Colesie, C., Ullmann, A., Westberg, M., Wedin, M. & Büdel, B. (2017) Lichen acclimation to changing environments: photobiont switching vs. climate-specific uniqueness in Psora decipiens . Ecology and Evolution 7: 25602574.CrossRefGoogle ScholarPubMed