Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T15:46:42.912Z Has data issue: false hasContentIssue false

Inoderma and related genera in Arthoniaceae with elevated white pruinose pycnidia or sporodochia

Published online by Cambridge University Press:  23 July 2015

Andreas Frisch*
Affiliation:
Department of Ecology, Swedish University of Agricultural Sciences, P. O. Box 7044, SE-750 07 Uppsala, Sweden
Yoshihito Ohmura
Affiliation:
Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki, 305-0005, Japan
Damien Ertz
Affiliation:
Department Bryophytes-Thallophytes, Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium
Göran Thor
Affiliation:
Department of Ecology, Swedish University of Agricultural Sciences, P. O. Box 7044, SE-750 07 Uppsala, Sweden

Abstract

The genus Inoderma (Ach.) Gray is lectotypified with Inoderma byssaceum and resurrected for a small group of species in Arthoniaceae with elevated, white pruinose pycnidia, immersed to adnate white pruinose apothecia and a weakly gelatinized hymenium. Inoderma nipponicum is described from Japan, I. afromontanum from Uganda and the European Lecanactis subabietina is transferred to the genus. Sporodophoron is described for a small group of species in Arthoniaceae related to Inoderma but with a unique type of sporodochia instead of pycnidia. Sterile specimens of this new genus resemble species of Tylophoron but differ in the rounded angular to elliptical to short cylindrical, 0–2-septate sporodochial conidia with unevenly thickened walls which are formed apically in zigzag-shaped and occasionally branched chains. Sporodophoron further differs in thallus chemistry and is genetically distinct. Tylophoron americanum and Schismatomma cretaceum are transferred to Sporodophoron, and the new species S. gossypinum from Japan and S. primorskiense from eastern Russia are described. The genus Glomerulophoron is described for a single species from Mauritius, G. mauritiae, differing from Sporodophoron in the tightly coiled chains of sporodochial conidia and being genetically distinct. A phylogenetic tree showing the position of Inoderma, Sporodophoron and Glomerulophoron in Arthoniaceae is presented. A key to all species of Arthoniaceae with sporodochia or elevated white pruinose pycnidia is presented. Arthothelium spectabile, the type of the large heterogeneous genus Arthothelium, is confirmed for the cryptothecioid subclade in Arthoniaceae.

Type
Articles
Copyright
© British Lichen Society, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharius, E. (1810) Lichenographia Universalis. Gottingae: Joannis Friderici Roeweri.Google Scholar
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov & F. Casaki, eds): 267281. Budapest: Academiai Kiado.Google Scholar
Aptroot, A. & Sipman, H. J. M. (2011) Sporodochiolichen, a new genus of tropical hyphomycetous lichens. Lichenologist 43 :357362.CrossRefGoogle Scholar
Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25 :6171.CrossRefGoogle Scholar
Coppins, B. J. & James, P. W. (1979) New or interesting British lichens IV. Lichenologist 11 :139179.CrossRefGoogle Scholar
Diederich, P. (2013) A redescription of Sporodochiolichen flavus (lichenized sprodochial Ascomycetes). Bulletin de la Société des Naturalistes Luxembourgeois 114 :5558.Google Scholar
Diederich, P. & Scheidegger, C. (1996) Reichlingia leopoldii gen. et sp. nov., a new lichenicolous hyphomycete from Central Europe. Bulletin de la Société des Naturalistes Luxembourgeois 97 :38.Google Scholar
Ertz, D. & Tehler, A. (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Diversity 49 :4771.CrossRefGoogle Scholar
Ertz, D., Bungartz, F., Diederich, P. & Tibell, L. (2011) Molecular and morphological data place Blarneya in Tylophoron (Arthoniaceae). Lichenologist 43 :345356.CrossRefGoogle Scholar
Ertz, D., Fischer, E., Killmann, D., Razafindrahaja, T. & Sérusiaux, E. (2013) Savoronala, a new genus of Malmideaceae (Lecanorales) from Madagascar with stipes producing sporodochia. Mycological Progress 12 :645656.CrossRefGoogle Scholar
Foucard, T. (2001) Svenska Skorplavar. Stockholm: Interpublishing.Google Scholar
Frisch, A. & Thor, G. (2010) Crypthonia, a new genus of byssoid Arthoniaceae (lichenised Ascomycota). Mycological Progress 9 :281303.CrossRefGoogle Scholar
Frisch, A., Thor, G. & Sheil, D. (2014 a) Four new Arthoniomycetes from Bwindi Impenetrable National Park, Uganda – supported by molecular data. Nova Hedwigia 98 :295312.CrossRefGoogle Scholar
Frisch, A., Thor, G., Ertz, D. & Grube, M. (2014 b) The Arthonialean challenge: restructuring Arthoniaceae. Taxon 63 :727744.CrossRefGoogle Scholar
Fryday, A. M., Fair, J. B., Googe, M. S., Johnson, A. J., Bunting, E. A. & Prather, L. A. (2001) Checklist of lichens and allied fungi of Michigan. Contributions to the University of Michigan Herbarium 23 :145223.Google Scholar
Gray, S. F. (1821) A Natural Arrangement of British Plants, Vol. 1. London: C. Baldwin.Google Scholar
Grube, M. (2001) Coniarthonia, a new genus of arthonioid lichens. Lichenologist 33 :491502.CrossRefGoogle Scholar
Grube, M. (2005) Nucleic acid isolation from ecological samples – fungal associations, lichens. Methods in Enzymology 395 :4857.CrossRefGoogle ScholarPubMed
Hafellner, J. (1995) A new checklist of lichens and lichenicolous fungi of insular Laurimacaronesia including a lichenological bibliography for the area. Fritschiana 5 :1132.Google Scholar
Handa, S., Frisch, A. & Ohmura, Y. (2014) Morphology of trentepohlialean photobionts isolated from Arthoniales of the Imperial Palace Grounds, Tokyo, Japan. Memoirs of the National Museum of Nature and Science, Tokyo 49 :219226.Google Scholar
Harris, R. C. (2004) A preliminary list of the lichens of New York. Opuscula Philolichenum 1 :5573.Google Scholar
Holder, M. & Lewis, P. O. (2003) Phylogeny estimation: traditional and Bayesian approaches. Nature Reviews Genetics 4 :275284.CrossRefGoogle ScholarPubMed
Hosaka, K. (2009) Phylogeography of the genus Pisolithus revisited with some additional taxa from New Caledonia and Japan. Bulletin of the National Museum of Nature and Science, Series B 35 :151167.Google Scholar
Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294 :23102314.CrossRefGoogle ScholarPubMed
Kashiwadani, H. & Thor, G. (2000) Lichens of the Imperial Palace Grounds, Tokyo. II. Memoirs of the National Science Museum, Tokyo 34 :171195.Google Scholar
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) Ainsworth & Bisby’s Dictionary of the Fungi, 10th edition. Wallingford: CAB International.CrossRefGoogle Scholar
Liu, Y. J., Whelen, S. & Hall, B. D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16 :17991808.CrossRefGoogle Scholar
Miądlikowska, J. & Lutzoni, F. (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical and large subunit nuclear ribosomal DNA data. International Journal of Plant Sciences 161 :925958.CrossRefGoogle Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.CrossRefGoogle Scholar
Ohmura, Y., Thor, G., Frisch, A., Kashiwadani, H. & Moon, K. H. (2014) Increase of lichen diversity in the Imperial Palace Grounds, Tokyo, Japan. Memoirs of the National Science Museum, Tokyo 49 :193217.Google Scholar
Orange, A. (1991) Notes on some terricolous species of Verrucaria. Lichenologist 23 :310.CrossRefGoogle Scholar
Orange, A., James, P. W. & White, F. J. (2010) Microchemical Methods for the Identification of Lichens, 2nd edition. London: British Lichen Society.Google Scholar
Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatakis, A. (2009) How many bootstrap replicates are necessary? In Proceedings of the 13th International Conference on Research in Computational Molecular Biology (RECOMB), Lecture Notes in Computer Science, Vol. 5541 (S. Batzoglou, ed.): 184200. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 :15721574.CrossRefGoogle ScholarPubMed
Santesson, R. (1952) Foliicolous lichens. I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12(1):1590.Google Scholar
Sundin, R. & Tehler, A. (1998) Phylogenetic studies of the genus Arthonia. Lichenologist 30 :381413.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 :27312739.CrossRefGoogle ScholarPubMed
Tehler, A. (1990) A new approach to the phylogeny of Euascomycetes with a cladistic outline of Arthoniales focusing on Roccellaceae. Canadian Journal of Botany 68 :24582492.CrossRefGoogle Scholar
Thomson, J. W. (2003) Lichens of Wisconsin. Madison: Wisconsin State Herbarium, Department of Botany, University of Wisconsin.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 :42384246.CrossRefGoogle ScholarPubMed
Vobis, G. (1980) Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien. Bibliotheca Lichenologica 14 :1141.Google Scholar
Wallroth, F. G. (1831) Flora Cryptogamica Germaniae, Pars Prior. Norimbergae: J. L. Schrag.Google Scholar
Wirth, V., Hauck, M., Schultz, M., de Bruyn, U., Bültmann, H., John, V., Litterski, B. & Otte, V. (2013) Die Flechten Deutschlands. Stuttgart: Eugen Ulmer KG.Google Scholar
Wolseley, P. A. & Hawksworth, D. L. (2009) Schismatomma Flot. & Körb. ex A. Massal. (1852). In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 834837. London: British Lichen Society.Google Scholar
Wolseley, P. A., Purvis, O. W. & Rose, F. (2009) Lecanactis Körb. (1855). In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 452453. London: British Lichen Society.Google Scholar
Zahlbruckner, A. (1921) Catalogus Lichenum Universalis I(2) Leipzig: Gebrüder Bornträger.Google Scholar
Zahlbruckner, A. (1922) Catalogus Lichenum Universalis II(1) Leipzig: Gebrüder Bornträger.Google Scholar
Zahlbruckner, A. (1925) Catalogus Lichenum Universalis III(2) Leipzig: Gebrüder Bornträger.Google Scholar
Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105 :10331044.CrossRefGoogle Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31 :511516.CrossRefGoogle Scholar