The transmitted and reflected second harmonics (SH) generation by an oblique p-polarized laser pulse irradiated on vacuum-magnetized plasma interface is investigated. The laser pulse propagates through a homogenous, underdense, and transversely magnetized plasma. The transverse magnetic field plays the role of a self-generated magnetic field produced in laser plasma interaction. It is shown that if the transmitted and reflected SH components investigated as a simultaneous process, the maximum SH power deviates from previous reports specially near the critical angle. The deviation increases with laser field intensity and plasma density. The results reveal that the conversion efficiency increases slightly by increasing incident angle and drastically enhances near the critical angle. We show that the transmitted SH power decreases by increasing the magnetic field strength, in contrast to the normal incidence, which the SH power is increased. The comparison revealed that the SH efficiency is greater for transmitted component, while the reflected component is more proper for technical and experimental applications. This paper not only conforms the previous reports for angle far from the critical but also modifies them for the SH generation near the critical angle. Moreover, this paper gives a new insight for SH generation by a magnetized plasma.