Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:48:12.878Z Has data issue: false hasContentIssue false

Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets

Published online by Cambridge University Press:  17 August 2009

L. Holmlid
Affiliation:
Atmospheric Science, Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
X. Yang
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: [email protected]

Abstract

Clusters of condensed deuterium of densities up to 1029 cm−3 in pores in solid oxide crystals were confirmed from time-of-flight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P.A., Robey, , Harry, F., Park, H.-S, Tipton, R.E., Turner, R.E., Milovich, J.L., Bono, N., Hibbard, H.L., Wallace, R. & Glebov, V.Y. (2005). Hohlraum-driven ignition-like double-shell implosions on the omega laser facility. Phys. Rev. Lett. 94, 065004/1-4.CrossRefGoogle Scholar
Azizi, N., Malekynia, B., Hora, H., Ghoranneviss, M., Miley, G.H. & He, X. (2009). Updated threshold for laser driven block ignition of neutron lean fusion energy. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Badiei, S. & Holmlid, L. (2006). Experimental studies of fast fragments of H Rydberg matter. J. Phys. B 39, 41914212.CrossRefGoogle Scholar
Badiei, S., Andersson, L. & Holmlid, L. (2009). High-energy Coulomb explosion in ultra-high dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. International J. Mass Spectr. 282, 7076.CrossRefGoogle Scholar
Boreham, B.W., Newman, D.S., Höpfl, D.S. & Hora, H. (1995). Depressed photoemission from Görlich cathodes at high laser light intensities. J. Appl. Phys. 78, 58485850.CrossRefGoogle Scholar
Dean, S.O. (2008). The rational for and expanding inertial fusion energy program. J. Fusion Energy 27, 149153.CrossRefGoogle Scholar
Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (About a heuristic position of generation and transmutation of light). Annalen der Physik, 17, 132145.CrossRefGoogle Scholar
Frischmuth-Hoffmann, G., Görlich, P. & Hora, H. (1960). Dependence of the photoemission of multialkali cathodes. Zeitschrift f. Naturforschung 15, 10141016.CrossRefGoogle Scholar
Goldsmid, H.J., Hora, H. & Paul, G.L. (1984). Anomalous heat conduction of ion-implanted amorphous layers in silicon crystals using a laser-probe technique. Phys. Stat. Sol. (a) 81, K127K130.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blasevic, A., Ni, P., Rosmej, P., Roth, M., Tahir, N.A.A., Tauschwitz, A., Udrea, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams Laser Part. Beams, 23, 4754.CrossRefGoogle Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.CrossRefGoogle Scholar
Hora, H. (1983). Stresses in silicon crystals from ion-implanted amorphous regions Appl. Phys. A 32, 15.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung A33, 890894.CrossRefGoogle Scholar
Hora, H., Badziak, J.Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-Ming, Zhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701, 1–7.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Communications 207 333338.CrossRefGoogle Scholar
Hora, H. & Kabiersch, G.B. (1968). Combined infrared photoemission from CsSb. Phys. Status Solidi 27, 593600.CrossRefGoogle Scholar
Hora, H., Kantlehner, R. & Riehl, N. (1965). Nonlinearities and discontinuities of the photoemission from multialkali cathodes at nitrogen temperatures. Zeitschrift f. Naturforschung 20A, 15911599.CrossRefGoogle Scholar
Hora, H., Kantlehner, R. & Riehl, N. (1966). Intensity hysteresis of the photoemission from multialkali cathodes at 77K. Zeitschrift f. Physik 190, 286294.CrossRefGoogle Scholar
Hora, H. & Kantlehner, R. (1969). Thermosensitive Discontinuities and hysteresis of the photoemission of alkali antimonide cathodes at high light intensities. Phys. Status Solidi 33, 669681.CrossRefGoogle Scholar
Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Lindl, J.D., (2005) The Edward Teller Medal Lecture: the evolution toward indirect drive and two decades of progress toward ignition and burn, in Edward Teller Lectures: Laser and Inertial Fusion Energy (H. Hora and G.H. Miley eds.) London: Imperial College Press, pp, 121147.Google Scholar
Lipson, A., Heuser, B.J., Castanov, C., Miley, G., Lyakov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507/1-6.CrossRefGoogle Scholar
Malvezzi, A.M., Kurz, H. & Bloembergen, N. (1985). Nonlinear photoemission from picosecond irradiatied silicon. Appl. Phys. A 36, 143150.CrossRefGoogle Scholar
Miley, G., Hora, H., Philberth, K., Lipson, A. & Shrestha, P.J. (2009). Radiochemical Comparisons on Low Energy Nuclear Reactions and Uranium. In Low-Energy Nuclear Reactions and New Energy Technologies Source Book (Marwan, J. & Krivit, S.B., Eds.). Washington, DC: American Chemical Society.Google Scholar
Miley, G.H. & Yang, X. (2008). Deuterium Cluster target for Ultra-High Density. In Proceedings from ANS-TOFE Conference. San Francisco, California.Google Scholar
Miley, G.H., Hora, H., Lipson, A., Luo, N. & Shrestha, J. (2007). Future power generation by lenr with thin-film electrons. American Chemical Society 233th Annual Meeting, Chicago, March.Google Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns.MJ laser pulses. Laser Part. Beams 23, 453460.CrossRefGoogle Scholar
Moses, E. (2008). Ignition on the National Ignition Facility. J. Phys.: Conf. Ser. 112, 12003/1-4.Google Scholar
Mulser, P., Kanapathipillai, M. & Hoffmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.CrossRefGoogle ScholarPubMed
Nuckolls, J.H. & Wood, L. (2005). Fast igniter for electron beam fusion. In Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. & Miley, G.H., Eds.). pp. 1314, London: Imperial College Press.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, , Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sari, A.H., Osman, F., Doolan, K.R., Ghoranneviss, M., Hora, H., Höpfl, R., Benstetter, G. & Hantehzadeh, H.M. (2005). Application of laser driven fast high density plasma blocks for ion implantation. Laser Part. Beams 23, 467473.CrossRefGoogle Scholar
Shockley, W. (1950) Electrons and Holes in Semiconductors New York: Van Nostrand.Google Scholar