Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T21:52:46.239Z Has data issue: false hasContentIssue false

Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression

Published online by Cambridge University Press:  22 July 2016

Z.H. Liu
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
Y.L. Wang*
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
H.L. Wang
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
H. Yuan
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
R. Liu
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
S.S. Li
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
Z. Bai
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
R.Q. Fan
Affiliation:
Department of Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China
W.M. He
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
Z.W. Lu
Affiliation:
Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*
Address correspondence and reprint requests to: Y.L. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, People's Republic of China. E-mail: [email protected]

Abstract

We report that the tail modulation of Stokes pulses in the high-energy stimulated Brillouin scattering pulse compression can be suppressed by controlling effective pulse width of the pump. It is shown through numerical simulations and validated experimentally that the effective pulse width is an appropriate parameter, which determines the generation of tail modulation. The effective pulse width broaden as the increase of energy. This mechanism leads to the amplification of Stokes tail edge and it is the cause of tail modulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bertolotti, M. (2015). High-order harmonic generation in laser plasma plumes, by Rashid Ganeev: Scope: Review. Level: Early career researcher, researcher, teacher, specialist. Contemp. Phys. 56, 8889.CrossRefGoogle Scholar
Damzen, M.J. & Hutchinson, M.H.R. (1983). High-efficiency laser-pulse compression by stimulated Brillouin scattering. Opt. Lett. 8, 313315.CrossRefGoogle ScholarPubMed
Dane, C.B., Neuman, W.A., Hackel, L.A., Norton, M.A. & Miller, J.L. (1992). Energy scaling of SBS pulse compression. Proc. SPIE 1626. 297307.CrossRefGoogle Scholar
Davydov, M.A., Shipilov, K.F. & Shmaonov, T.A. (1986). Formation of highly compressed stimulated Brillouin scattering pulses in liquids. Sou. J. Quantum Electron. 16, 14021403.CrossRefGoogle Scholar
Feng, C., Xu, X. & Diels, J.C. (2014). Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm. Opt. Lett. 39, 33673370.CrossRefGoogle Scholar
Ganeev, R.A., Suzuki, M. & Kuroda, H. (2014). Advanced properties of extended plasmas for efficient high-order harmonic generation. Phys. Plasmas 21, 053503.CrossRefGoogle Scholar
Gorbunov, V.A., Papernyĭ, S.B., Petrov, V.F. & Startsev, V.R. (1983). Time compression of pulses in the course of stimulated Brillouin scattering in gases. Sou. J. Quantum Electron. 13, 900905.CrossRefGoogle Scholar
Guillaume, E., Humphrey, K., Nakamura, H., Trines, R.M.G.M., Heathcote, R., Galimberti, M. & Kar, S. (2014). Demonstration of laser pulse amplification by stimulated Brillouin scattering. High Power Laser Sci. Eng. 2, e33.CrossRefGoogle Scholar
Hasi, W., Zhao, H., Lin, D., He, W. & , Z. (2015). Characteristics of perfluorinated amine media for stimulated Brillouin scattering in hundreds of picoseconds pulse compression at 532 nm. Chin. Opt. Lett. 13, 061901061901.CrossRefGoogle Scholar
Ishii, N., Turi, L., Yakovlev, V.S., Fuji, T., Krausz, F., Baltuška, A. & Piskarskas, A. (2005). Multimillijoule chirped parametric amplification of few-cycle pulses. Opt. Lett. 30, 567569.CrossRefGoogle ScholarPubMed
Kuwahara, K., Takahashi, E., Matsumoto, Y., Kato, S. & Owadano, Y. (2000). Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering. JOSA B 17, 19431947.CrossRefGoogle Scholar
Laroche, M., Gilles, H. & Girard, S. (2011). High-peak-power nanosecond pulse generation by stimulated Brillouin scattering pulse compression in a seeded Yb-doped fiber amplifier. Opt. Lett. 36, 241243.CrossRefGoogle Scholar
Mitra, A., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.CrossRefGoogle Scholar
Ottusch, J.J. & Rockwell, D.A. (1991). Stimulated Brillouin scattering phase-conjugation fidelity fluctuations. Opt. Lett. 16, 369371.CrossRefGoogle ScholarPubMed
Popmintchev, T., Chen, M.C., Popmintchev, D., Arpin, P., Brown, S., Ališauskas, S. & Baltuška, A. (2012). Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science 336, 12871291.CrossRefGoogle ScholarPubMed
Roy, D.G. & Rao, D.V.G.L.N. (1986). Optical pulse narrowing by backward, transient stimulated Brillouin scattering. J Appl. Phys. 59, 332335.Google Scholar
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup. IEEE J. Quantum Electron. 33, 358366.CrossRefGoogle Scholar
Velchev, I., Neshev, D., Hogervorst, W. & Ubachs, W. (1999). Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering. IEEE J. Quantum Electron. 35, 18121816.CrossRefGoogle Scholar
Xu, X., Feng, C. & Diels, J.C. (2014). Optimizing sub-ns pulse compression for high energy application. Opt. Express 22, 1390413915.CrossRefGoogle ScholarPubMed
Yoon, J.W., Shin, J.S., Kong, H.J. & Lee, J. (2009). Investigation of the relationship between the prepulse energy and the delay time in the waveform preservation of a stimulated Brillouin scattering wave by prepulse injection. JOSA B 26, 21672170.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, (2007). Compact temporal-pulse-compressor used in fused-silica glass at 1064 nm wavelength. J. Appl. Phys. 46, L80L82.CrossRefGoogle Scholar
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 1365413662.CrossRefGoogle ScholarPubMed
Yuan, H., Lu, Z.W., Wang, Y.L., Zheng, Z.X. & Chen, Y. (2014). Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier. Laser Part. Beams 32, 369374.CrossRefGoogle Scholar
Zhu, X., Lu, Z. & Wang, Y. (2015). High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression. Laser Part. Beams 33, 1115.CrossRefGoogle Scholar