Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:05:32.205Z Has data issue: false hasContentIssue false

A study of laser plasmas as X-ray sources in the 1–10 keV spectral region

Published online by Cambridge University Press:  09 March 2009

S. Bastiani
Affiliation:
Istituto di Fisica Atomica e Molecolare, Via del Giardino 7, 56127 Pisa, Italy
A. Giulietti
Affiliation:
Istituto di Fisica Atomica e Molecolare, Via del Giardino 7, 56127 Pisa, Italy
L.A. Gizzi
Affiliation:
Istituto di Fisica Atomica e Molecolare, Via del Giardino 7, 56127 Pisa, Italy
T. Ceccotti
Affiliation:
Istituto di Fisica Atomica e Molecolare, Via del Giardino 7, 56127 Pisa, Italy
A. Macchi
Affiliation:
Istituto di Fisica Atomica e Molecolare, Via del Giardino 7, 56127 Pisa, Italy
D. Giulietti
Affiliation:
Dipartimento di Fisica, Università di Pisa, Piazza Torricelli 2, Pisa, Italy

Abstract

An experimental investigation on X-ray emission from laser-produced plasmas is presented and the properties of such an emission of interest for application purposes are examined. Plasmas were generated by focusing 1 μm, 3 ns Nd laser pulses onto Al and Cu targets at an intensity of 1013 W/cm2. The temporal evolution of the emission and its spectral features were investigated by using an X-ray streak-camera and an X-ray photodiode. In the case of Cu targets, the analysis of the emission showed two spectral components. The main component was centered at ≈ 1.2 keV and a minor component, whose intensity was measured to be 10-3 of the previous component, was observed at ≈7 keV. The X-ray conversion efficiency, in the investigated spectral region, was measured to be 1% for Cu targets and 0.3% for Al targets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amiranoff, F. 1979 Etude des mechanismes d'interaction laser-matiere par mesure du rayonnement continu, Doctoral Thesis, 3rd level, Université Paris XI.Google Scholar
Bastiani, S. 1994 Studio dello spettro e dell'evoluzione temporale dell'emissione X di plasmi prodotti da laser, Thesis, Università di Pisa.Google Scholar
Batani, D. et al. 1991 Proceedings of SPIE (The Hague, Netherlands) 1503, 479.Google Scholar
Batani, D. et al. 1993 II Nuovo Cimento 15D, 753.CrossRefGoogle Scholar
Biancalana, V. et al. 1993 Europhys. Lett. 22, 175.CrossRefGoogle Scholar
Duston, D. & Davis, J. 1980 Phys. Rev. A 21, 1664.CrossRefGoogle Scholar
Giulietti, D. et al. 1995 Il Nuovo Cimento D 17D, 401.CrossRefGoogle Scholar
Gizzi, L.A. et al. 1994 Phys. Rev. E 49, 5628.CrossRefGoogle Scholar
Griem, H.R. 1983 Handbook of Plasma Physics, Vol. 1, Galeev, A.A. and Sudan, R.N., eds. (North-Holland, Amsterdam).Google Scholar
Henke, et al. 1982 At. Data Nucl. Tables 27, 1.CrossRefGoogle Scholar
Hughes, T.P. 1979 Proceedings of the 20th SUSSP, St. Andrews, Cairns, R.A. and Sanderson, J.J., eds. (SUSSP Publications, Edinburgh).Google Scholar
Lamoureux, M. et al. 1984 Phys. Rev. A 30, 429.CrossRefGoogle Scholar
Lee, R.W. et al. 1984 J. Quant. Spectr. Radiat. Transfer 32, 91.CrossRefGoogle Scholar
Rose, S.J. 1991 Laser. Part. Beams 9, 869.CrossRefGoogle Scholar
Rosen, D. 1990 Phys. Fluids 2, 1461.CrossRefGoogle Scholar
Sigel, R. 1994 Laser-induced Radiation Hydrodynamics: X-ray Generation and Application (XLV SUSSP, St. Andrews).Google Scholar
Tallents, G.J. et al. 1986 Austr. J. Phys. 39, 253.CrossRefGoogle Scholar
Tillman, et al. 1995 Rev. Phys. B (in press).Google Scholar
Yamanaka, C. 1991 Handbook of Plasma Physics, Vol. 3, Rubenchik, A. and Witkowski, S., eds. (North-Holland, Amsterdam).Google Scholar