Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:17:04.295Z Has data issue: false hasContentIssue false

Radiochemistry measurements on the Phebus laser

Published online by Cambridge University Press:  09 March 2009

D. Schirmann
Affiliation:
Centre d'Etudes de Limeil-Valenton, Cedex, France
C. Bayer
Affiliation:
Centre d'Etudes de Limeil-Valenton, Cedex, France
J. P. Garçonnet
Affiliation:
Centre d'Etudes de Limeil-Valenton, Cedex, France
D. Juraszek
Affiliation:
Centre d'Etudes de Limeil-Valenton, Cedex, France
A. Bertin
Affiliation:
Centre d'Etudes de Bruyères Le Châtel BP 12, 91680 Bruyères Le Châtel, France
G. Grenier
Affiliation:
Centre d'Etudes de Bruyères Le Châtel BP 12, 91680 Bruyères Le Châtel, France

Abstract

We are developing neutron diagnostics to characterize the implosions performed with the Phebus laser, operating at 5 kJ blue light delivered in 1·3 ns. For measuring the glass pusher areal density, (ρΔR), of the target, a silicon radiochemistry diagnostic has been implemented and is currently being used. We describe the diagnostic and its performance. Pusher areal density measurements, (ρΔR) and calculated values of fuel density are given. Deuterium (D)-tritium (T) final densities as high as 100 × D-T liquid density (20 g/cm3) have been achieved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andre, M. et al. 1990 In IAEA 13th International Conference on Plasma Physics and Controlled Nuclear Fusion (Washington, DC), 3, 15.Google Scholar
Andre, M. et al. 1991 In IAEA 14th International Conference on Plasma Physics and Controlled Nuclear Fusion (Osaka, Japan), in press.Google Scholar
Andre, M. et al. 1992 Laser Part. Beams 10, 557571.CrossRefGoogle Scholar
Azechi, H. et al. 1991 Laser Part. Beams, 9 193207.CrossRefGoogle Scholar
Bertin, A. et al. 1991 Rev. Sci. Tech. Direct. Appl. Militaires. 1, 65.Google Scholar
Campbell, E.M. 1977 LLNL Annu. Rep. 3, 84.Google Scholar
Campbell, E.M. et al. 1980 J. Appl. Phys. 51, 12.Google Scholar
Garçonnet, J.-P. et al. 19821988 Rapport des Activités Laser du CEL-V 156, pp. 103 and 202.Google Scholar
Kato, Y. et al. 1987 ILE Q. Prog. Rep. 87–21, 6.Google Scholar
Lane, S.M. 1980 LLNL Ann. Rep. 5, 40.Google Scholar
Lane, S.M. et al. 1980 Appl. Phys. Lett. 37, 7.CrossRefGoogle Scholar
Lane, S.M. et al. 1990 Rev. Sci. Instrum. 61, 10.CrossRefGoogle Scholar
McCrory, R.L. et al. 1990 In IAEA 13th International Conference on Plasma Physics and Controlled Nuclear Fusion (Washington, DC), 3, 41.Google Scholar
Miyanaga, N. et al. 1986 Rev. Sci. Instrum. 57, 8.CrossRefGoogle Scholar
Nakajshi, H. et al. 1989 Appl. Phys. Lett. 55, 20.Google Scholar
Richardson, M.C. et al. 1986 Rev. Sci. Instrum. 57, 8.CrossRefGoogle Scholar
Rosen, M.D. et al. 1979 Phys. Fluids 22, B98.Google Scholar
Schirmann, D., Juraszek, D., Lane, S.M. & Campbell, E.M. 1992 Laser Part. Beams. 10, 91108.CrossRefGoogle Scholar
Storm, E.K. et al. 1980 LLNL Report UCRL-5002I-79.Google Scholar
Storm, E.K. et al. 1988 LLNL Report UCRL-99427.Google Scholar
Thiell, G. et al. 1988 Laser Particle Beams 6, 93.CrossRefGoogle Scholar
Ze, F. et al. 1986 Comments Plasma Phys. Control. Fusion. 10, 33.Google Scholar