Published online by Cambridge University Press: 01 December 2010
The results of numerical and experimental studies of high-intensity proton beam generation using a 2ω or 1ω Nd:glass laser beam irradiating a thin hydrogen-rich target are reported. The effect of the laser wavelength (λ), intensity (IL) and pulse duration as well as the target thickness, and the preplasma density gradient scale length on proton beam parameters, and the laser-protons energy conversion efficiency were examined by particle-in-cell simulations. Both the simulations and measurements, performed on the LULI 100 TW laser facility at IL up to 2 × 1019W/cm2, prove that at the ILλ2 product fixed, the 2ω laser driver can produce proton beams of intensity, current density and energy fluence significantly higher than the ones which could be achieved using the 1ω driver. In particular, at ILλ2~(0.5–1) × 1020 Wcm−2 µm2 the 2ω picosecond driver makes it possible to generate multi-MeV proton beams of intensity and current density in excess of 1021W/cm2 and 1014A/cm2, respectively, with the conversion efficiency above 10%.