Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T22:05:49.390Z Has data issue: false hasContentIssue false

Photo-transmutation of long-lived radionuclide 135Cs by laser–plasma driven electron source

Published online by Cambridge University Press:  20 June 2016

X.-L. Wang
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China
Z.-Y. Tan
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China
W. Luo*
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China Extreme Light Infrastructure-Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele, Romania
Z.-C. Zhu
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China
X.-D. Wang
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China
Y.-M. Song
Affiliation:
College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China
*
Address correspondence and reprint requests to: W. Luo, College of Nuclear Science and Technology, University of South China, 421001 Hengyang, China. E-mail: [email protected]

Abstract

Laser-driven relativistic electrons can be focused onto a high-Z convertor for generating high-brightness γ-rays, which in turn can be used to induce photonuclear reactions. In this work, photo-transmutation of long-lived radionuclide 135Cs induced by laser–plasma–interaction-driven electron source is demonstrated using Geant4 simulation (Agostinelli et al., 2003 Nucl. Instrum. Meth. A506, 250). High-energy electron generation, bremsstrahlung, as well as photonuclear reaction are observed at four different laser intensities: 1020, 5 × 1020, 1021, and 5 × 1021 W/cm2. The transmutation efficiency depends on the laser intensity and target size. An optimum laser intensity, namely 1021 W/cm2, was found, with the corresponding photonuclear reaction yield reaching 108 J−1 of the laser energy. Laser-generated electrons can therefore be a promising tool for transmutation reactions. Potential application in nuclear waste management is suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D. & Gómez Cadenas, J.J. (2003). Geant4-A simulation toolkit. Nucl. Instrum. Methods A 506, 250303.Google Scholar
Antici, P., Albertazzi, B., Audebert, P., Buffechoux, S., Hannachi, F., D'humières, E., Gobet, F., Grismayer, T., Mancic, A., Nakatsutsumi, M., Plaisir, C., Romagnani, L., Tarisien, M., Pépin, H., Sentoku, Y. & Fuchs, J. (2012). Measuring hot electron distributions in intense laser interaction with dense matter. New J. Phys. 14, 063023.Google Scholar
Chen, C.D., Patel, P.K., Hey, D.S., Mackinnon, A.J., Key, M.H., Akli, K.U., Bartal, T., Beg, F.N., Chawla, S., Chen, H., Freeman, R.R., Higginson, D.P., Link, A., Ma, T.Y., Macphee, A.G., Stephens, R.B., Van Woerkom, L.D., Westover, B. & Porkolab, M. (2009). Bremsstrahlung and K α fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Phys. Plasmas 16, 082705.CrossRefGoogle Scholar
Debayle, A., Honrubia, J.J., D'humières, E. & Tikhonchuk, V.T. (2010). Divergence of laser-driven relativistic electron beams. Phys. Rev. E 82, 036405.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Galy, J., Hamilton, D.J. & Normand, C. (2009). High-intensity laser as radiation sources. Eur. Phys. J., Spec. Top. 175, 147152.CrossRefGoogle Scholar
Galy, J., Maučec, M., Hamilton, D.J., Edwards, R. & Magill, J. (2007). Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9, 010023.Google Scholar
Giulietti, A., Bourgeois, N., Ceccotti, T., Davoine, X., Dobosz, S., D'oliveira, P., Galimberti, M., Galy, J., Gamucci, A., Giulietti, D., Gizzi, L.A., Hamilton, D.J., Lefebvre, E., Labate, L., Marquès, J.R., Monot, P., Popescu, H., Réau, F., Sarri, G., Tomassini, P. & Martin, P. (2008). Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002.Google Scholar
Glinec, Y., Faure, J., Le Dain, L., Darbon, S., Hosokai, T., Santos, J.J., Lefebvre, E., Rousseau, J.P., Burgy, F., Mercier, B. & Malka, V. (2005). High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett. 94, 025003.Google Scholar
Hanus, V., Drska, L., D'humieres, E. & Tikhonchuk, V. (2014). Numerical study of positron production with short-pulse high-intensity lasers. Laser Part. Beams 32, 171176.CrossRefGoogle Scholar
Imasaki, K., Li, D., Miyamoto, S., Amano, S. & Mochizuki, T. (2006). High-brightness γ-Ray Generation for Nuclear Transmutation. Lasers Nucl. 694, 147167.Google Scholar
Irani, E., Sadighi, S.K., Zare, S. & Sadighi-Bonabi, R. (2012). Laser-induced photo transmutation of 126Sn-A hazardous nuclear waste product-into short-lived nuclear medicine of 125Sn. Energy Convers. Manage. 64, 466472.Google Scholar
Ledingham, K.W.D., Mckenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 11071111.Google Scholar
Luo, W., Zhu, Y.B., Zhuo, H.B., Ma, Y.Y., Song, Y.M., Zhu, Z.C., Wang, X.D., Li, X.H., Turcu, I.C.E. & Chen, M. (2015). Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Phys. Plasmas 22, 063112.CrossRefGoogle Scholar
Luo, W., Zhuo, H.B., Ma, Y.Y., Yang, X.H., Zhao, N. & Yu, M.Y. (2013). Ultrashort-pulse MeV positron beam generation from intense Compton-scattering γ-ray source driven by laser wakefield acceleration. Laser Part. Beams 31, 8994.CrossRefGoogle Scholar
Magill, J., Schwoerer, H., Ewald, F., Galy, J., Schenkel, R. & Sauerbrey, R. (2003). Laser transmutation of iodine-129. Appl. Phys. B 77, 387390.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Moore, C.I., Knauer, J.P.K. & Meyerhofer, D.D. (1995). Observation of the transition from Thomson to compton scattering in multiphoton interactions with low-energy electrons. Phys. Rev. Lett. 74, 24392442.CrossRefGoogle ScholarPubMed
Quesnel, B. & Mora, P. (1998). Theory and simulation of the interaction of ultraintense laser pulse with electrons in vacuum. Phys. Rev. E 58, 37193732.CrossRefGoogle Scholar
Sadighi, S.K. & Sadighi-Bonabi, R. (2010). The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultraintense lasers. Laser Part. Beams 28, 269276.Google Scholar
Sadighi-Bonabi, R., Irani, E., Safaie, B., Imani, K.H., Silatani, M. & Zare, S. (2010). Possibility of ultra-intense laser transmutation of 93Zr(γ, n) 92 Zr a long-lived nuclear waste into a stable isotope. Energy Convers. Manage. 51, 636639.Google Scholar
Sadighi-Bonabi, R. & Kokabee, O. (2006). Evaluation of transmutation of 137Cs(γ, n) 136Cs using ultraintense lasers. Chin. Phys. Lett. 23, 061434.Google Scholar
Schwoerer, H., Ewald, F., Sauerbrey, R., Galy, J., Magill, J., Rondinella, V., Schenkel, R. & Butz, T. (2003). Fission of actinides using a tabletop laser. Europhys. Lett. 61, 4752.Google Scholar
Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.Google Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.Google Scholar
Shkolnikov, P.L., Kaplan, A.E., Pukhov, A. & Meyer-Ter-vehn, J. (1997). Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser. Appl. Phys. Lett. 71, 34713473.Google Scholar
Shuji, M., Yoshihiro, A., Sho, A., Dazhi, L., Kazuo, I., Hiroaki, K., Yoshihiko, S., Tetsuya, T. & Takayasu, M. (2007). Laser Compton back-scattering gamma-ray beamline on NewSUBARU. Radiat. Meas. 41, 179185.Google Scholar
Takashima, R., Hassegawa, S., Nemoto, K. & Kato, K. (2005). Possibility of transmutation of 135Cs by ultraintense laser. Appl. Phys. Lett. 86, 011501.Google Scholar
Tanimoto, T., Habara, H., Kodama, R., Nakatsutsumi, M., Tanaka, K.A., Lancaster, K.L., Green, J.S., Scott, R.H.H., Sherlock, M., Norreys, P.A., Evans, R.G., Haines, M.G., Kar, S., Zepf, M., King, J., Ma, T., Wei, M.S., Yabuuchi, T., Beg, F.N., Key, M.H., Nilson, P., Stephens, R.B., Azechi, H., Nagai, K., Norimatsu, T., Takeda, K., Valente, J. & Davies, J.R. (2009). Measurements of fast electron scaling generated by petawatt laser systems. Phys. Plasmas 16, 062703.Google Scholar
Wilks, S.C., Krurer, W.L., Tabak, M., & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Yan, Y.H., Zhao, Z.Q., Wu, Y.C., Gu, Y.Q., Cao, L.F., Yao, Z.E., Teng, J., Dong, K.G., Liu, D.X., Fan, W., Wei, L. & Yu, J.Q. (2012). Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions. Phys. Plasmas 19, 023114.Google Scholar
Yang, W.S., Kim, Y., Hill, R.N., Taiwo, T.A. & Khalil, H.S. (2004). Long-lived fission product transmutation studies. Nucl. Sci. Eng. 146, 291318.Google Scholar
Zhu, Z.C., Luo, W., Li, Z.C., Song, Y.M., Wang, X.D., Wang, X.L. & Fan, G.T. (2016). Photo-transmutation of long-lived nuclear waste 135Cs by intense Compton γ-ray source. Ann. Nucl. Energy 89, 109114.Google Scholar