Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:26:51.007Z Has data issue: false hasContentIssue false

Parametric exploration of intense positron beam–plasma interactions

Published online by Cambridge University Press:  25 March 2004

B.E. BLUE
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
C.E. CLAYTON
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
C.L. O'CONNELL
Affiliation:
Stanford Linear Accelerator Center, Stanford University, Stanford, California
F.-J. DECKER
Affiliation:
Stanford Linear Accelerator Center, Stanford University, Stanford, California
M.J. HOGAN
Affiliation:
Stanford Linear Accelerator Center, Stanford University, Stanford, California
C. HUANG
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
R. IVERSON
Affiliation:
Stanford Linear Accelerator Center, Stanford University, Stanford, California
C. JOSHI
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
T.C. KATSOULEAS
Affiliation:
Electrical Engineering Department, University of Southern California, Los Angeles, California
K.A. MARSH
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
W.B. MORI
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, California
D. WALZ
Affiliation:
Stanford Linear Accelerator Center, Stanford University, Stanford, California

Abstract

A systematic investigation of the longitudinal fields excited in a plasma by a short, dense beam of positrons is carried out using two-dimensional, cylindrical geometry, particle-in-cell code simulations. In particular, we examine the behavior of the accelerating and decelerating fields of the wakefield as a function of beam charge, radius, length, and plasma density. The parameters are chosen to be consistent with those employed in current and future experiments designed to elucidate the physics of positron beam–plasma interactions.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagger, J. & Barish, B. (2002). The High-Energy Physics Advisory Panel long range plan for U.S. high-energy physics in the 21st century. http://doe-hep.hep.net/lrp_panel/hepap_lrp.pdf.
Barov, N., Rosenzweig, J.B., Conde, M.E., Gai, W. & Power, J.G. (2000). Observation of plasma wakefield acceleration in the underdense regime. Phys. Rev. ST Accel. Beams 3, 011301:110.Google Scholar
Blue, B.E., Clayton, C.E., O'Connell, C.L., Decker, F.-J., Hogan, M.J., Huang, C., Iverson, R., Joshi, C., Katsouleas, T.C., Lu, W., Marsh, K.A., Muggli, P., Siemann, R.H. & Walsh, D. (2003). Plasma-wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 9, 4801.Google Scholar
Bruhwiler, D.L., Giacone, R.E., Cary, J.R., Verboncoeur, J.P., Mardahl, P., Esarey, E., Leemans, W.P. & Shadwick, B.A. (2001). Particle-in-cell simulations of plasma accelerators and electron-neutral collisions. Phys. Rev. ST Accel. Beams 4, 101302:113.
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.Google Scholar
Hairapetian, G., Davis, P., Clayton, C.E., Joshi, C., Hartman, S.C. & Pellegrini, C. (1994). Experimental demonstration of dynamic focusing of a relativistic electron bunch by an overdense plasma lens. Phys. Rev. Lett. 72, 24032406.Google Scholar
Hairapetian, G., Davis, P., Clayton, C.E., Joshi, C., Pellegrini, C. & Katsouleas, T. (1995). Transverse dynamics of a short, relativistic electron bunch in a plasma lens. Phys. Plasmas 2, 25552561.Google Scholar
Hammer, D. A. & Rostoker, N. (1970). Propagation of high current relativistic electron beams. Phys. Fluids 13, 18311850.Google Scholar
Hogan, M.J., Clayton, C.E., Huang, C., Muggli, P., Wang, S., Blue, B.E., Walz, D., Marsh, K.A., O'Connell, C.L., Lee, S., Iverson, R., Decker, F.-J., Raimondi, P., Mori, W., Katsouleas, T.C., Joshi, C. & Siemann, R.H. (2003). Ultrarelativistic-positron-beam transport through meter-scale plasmas. Phys. Rev. Lett. 90, 5002.Google Scholar
Joshi, C., Blue, B., Clayton, C. E., Dodd, E., Huang, C., Marsh, K. A., Mori, W.B. Wang, S., Hogan, M.J., O'Connell, C., Siemann, R., Walz, D., Muggli, P., Katsouleas, T., &Lee S. (2002). High energy density plasma science with an ultrarelativistic electron beam. Phys. Plasmas 9, 18451855.Google Scholar
Katsouleas, T., Wilks, S., Chen, P., Dawson, J.M. & Su, J.J. (1987). Beam loading in plasma accelerators. Part. Accel. 22, 8199.Google Scholar
Lee, S., Katsouleas, T., Hemker, R.G., Dodd, E.S. & Mori, W.B. (2001). Plasma-wakefield acceleration of a positron beam. Phys. Rev. E 64, 045501:14.
Lee, S., Katsouleas, T., Hemker, R.G. & Mori, W.B. (2000). Simulations of a meter-long plasma wakefield accelerator. Phys. Rev. E. 61, 70147021.Google Scholar
Ng, J.S.T., Chen, P., Baldis, H., Bolton, P., Cline, D., Craddock, W., Crawford, C., Decker, F.J., Field, C., Fukui, Y., Kumar, V., Iverson, R., King, F., Kirby, R.E., Nakajima, K., Noble, R., Ogata, A., Raimondi, P., Walz, D. & Weidemann, A.W. (2001). Observation of plasma focusing of a 28.5 GeV positron beam. Phys. Rev. Lett. 87, 244801:14.