Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:22:33.616Z Has data issue: false hasContentIssue false

Laser targets compensate for limitations in inertial confinement fusion drivers

Published online by Cambridge University Press:  05 December 2005

J.D. KILKENNY
Affiliation:
General Atomics, San Diego, California
N.B. ALEXANDER
Affiliation:
General Atomics, San Diego, California
A. NIKROO
Affiliation:
General Atomics, San Diego, California
D.A. STEINMAN
Affiliation:
General Atomics, San Diego, California
A. NOBILE
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
T. BERNAT
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
R. COOK
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
S. LETTS
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
M. TAKAGI
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
D. HARDING
Affiliation:
Laboratory for Laser Energetic, University of Rochester, Rochester, New York

Abstract

Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Glendinning, S.G., Hammel, B.A., Landen, O. & Suter, L.J. (1996). Direct measurement of x-ray drive from surrogate targets in NOVA hohlraums. Phys. Rev. Lett. 77, 38153818.Google Scholar
Besenbruch, G., Alexander, N.B., Baugh, W.A., Bernat, T.P., Collins, R.P., Boline, K.K., Brown, L.C., Gibson, C.R., Goodin, D.T., Harding, D.R, Lund, L., Nobile, A., Schultz, K.R. & Stemke, R.W. (1999). Design and testing of cryogenic targets systems. In Inertial Fusion Science and Applications 9 (Labaune, C., Labaune, W.J. & Tanaka, K.A., Eds.), pp. 921926. Paris: Elsevier.
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Callahan, D.A., Herrmann, M.C. & Tabak, M. (2002). Progress in heavy ion target capsule and hohlraurn design. Laser Part. Beams 20, 405410.Google Scholar
Delamater, N.D., Lindman, E.L., Magelssen, G.R., Failor, B.H., Murphy, T.J., Hauer, A.A., Gobby, P., Moore, J.B., Gomez, V., Gifford, K., Kauffman, R.L., Landen, O.L., Hammel, B.A., Glendinning, G., Powers, L.V., Suter, L.J., Dixit, S., Peterson, R.R. & Richard, A.L. (2000). Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova. Phys. Plasmas 7, 16091613.Google Scholar
Deutsch, C. (2003). Transport of mega-electron volt protons for fast ignition. Laser Part. Beams 21, 3336.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M. & Mceachern, R. (1998). Reduced scale national ignition facility capsule design. Phys. Plasmas 5, 37083713.Google Scholar
Goodin, D.T., Alexander, N.B., Brown, L.C., Frey, D.T., Gallix, R., Gibson, C.R., Maxwell, J.L., Nobile, A., Olson, C., Petzoldt, R.W., Raffray, R., Rochau, G., Schroen, D.G., Tillack, M., Rickman, W.S. & Vermillion, B. (2004). A cost-effective target supply for inertial fusion energy. Nucl. Fusion 44, S254S265.Google Scholar
Hoffer, J.K. & Foreman, L.R. (1988). Radioactively induced sublimation in solid tritium. Phys. Rev. Lett. 60, 13101313.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Kauffman, R.L., Powers, L.V., Dixit, S.N., Glendinning, S.G., Glenzer, S.H., Kirkwood, R.K., Landon, O.L., Macgowan, B.J., Moody, J.D., Orzechowski, T.J., Pennington, D.M., Stone, G.F., Suter, L.J., Turner, R.E., Weiland, T.L., Richard, A.L. & Blain, M.A. (1998). Improved gas-filled hohlraum performance on NOVA with beam smoothing. Phys. Plasmas 5, 19271934.Google Scholar
Kilkenny, J.D., Glendinning, S.G., Haan, S.W., Hammel, B.A., Lindl, J.D., Munro, D., Remington, B.A., Weber, S.V., Knauer, J.P. & Verdon, C.P. (1994). A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas 1, 13791389.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.Google Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.Google Scholar
Martin, A.J., Simms, R.J. & Jacobs, R.B. (1988). Beta-energy driven uniform deuterium tritium ice layer in reactor-size cryogenic inertial fusion-targets. J. Vacuum Sci. Technol. A 6, 18851888.Google Scholar
McCrory, R.L. (2003). Progress in inertial confinement fusion in the United States. In Inertial Fusion Science and Applications (Hammel, B.A., Meyerhofer, D.D., Meyer-ter-Vehn, J. & Azechi, H., Eds.). LaGrange Park: American Nuclear Society.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Nikroo, A., Czechowicz, D., Paguio, R., Paguio, R., Greenwood, A.L. & Takagi, M. (2004a). Fabrication and properties of over coated resorcinol-formaldehyde shells for omega experiments. Fusion Sci.Technol. 45, 8489.Google Scholar
Nikroo, A., Bousquet, J., Cook, R., Mcquillan, B.W., Paguio, R. & Takagi, M. (2004b). Progress in 2 mm glow discharge polymer mandrel development for NIF. Fusion Sci. Technol. 45, 165170.Google Scholar
Norimatsu, T., Nagai, K., Takea, T. & Yamanaka, T. (2001). Foam insulated direct-drive cryogenic target. In Inertial Fusion Science and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), pp. 752756. Paris: Elsevier.
Olson, R E., Leeper, R.J., Dropinski, S.C., Mix, L.P., Rochau, G.A., Glenzer, S.H., Jones, O.S., Suter, L.J., Kaae, J.L., Shearer, C.H. & Smith, J.N. (2003). Time and spatially resolved measurements of x-ray burn through and reemission in Au and Au: Dy:Nd foils. Rev. Sci. Instr. 74, 21862190.Google Scholar
Orzechowski, T.J., Rosen, M.D., Kornblum, H.N., Porter, J.L., Suter, L.J., Thiessen, A.R. & Wallace, R.J. (1997). The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures. Phys. Rev. Lett. 78, 22732273.Google Scholar
Rickman, W.S. & Goodin, D.T. (2003). Cost modeling for fabrication of direct drive inertial fusion energy targets. Fusion Sci. Technol. 43, 353358.Google Scholar
Streit, J. & Schroen, D. (2003). Development of divinylbenzene foam shells for use as inertial fusion energy reactor targets. Fusion Sci. Technol. 43, 321326.Google Scholar
Wilson, D.C., Bradley, P.A., Hoffman, N.M., Swenson, F.J., Smitherman, D.P., Chrien, R.E., Margevicius, R.W., Thoma, D.J., Foreman, L.R., Hoffer, J.K., Goldman, S.R., Caldwell, S.E., Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M. & Sanchez, J.J. (1998). The development and advantages of beryllium capsules for the national ignition facility. Phys. Plasmas 5, 19531959.Google Scholar
Woodworth, J. & Meier, W. (1995). Target production for Inertial Fusion Energy Livermore. CA: Lawrence Livermore National Laboratory, Document UCEL-ID-117396.