Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T19:14:10.775Z Has data issue: false hasContentIssue false

Laser excitation of terahertz surface plasma wave over a hollow capillary plasma

Published online by Cambridge University Press:  28 December 2015

Rohtash Singh*
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi-110016, India
V. K. Tripathi
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi-110016, India
*
Address correspondence and reprint request to: Rohtash Singh, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: [email protected]

Abstract

Two collinear laser pulses of finite spot size propagating through a capillary plasma, modeled as a hollow plasma cylinder, are shown to produce beat frequency terahertz (THz) surface plasmons at the inner surface. The evanescent laser fields in the plasma impart oscillatory velocity to electrons and exert a beat ponderomotive force on them. The static component of the ponderomotive force inhibits plasma from filling the vacuum region while the beat frequency component produces a nonlinear current (${\vec J^{{\;\rm NL}}}$) that drives the difference frequency THz surface plasma wave (SPW). Phase matching for the THz surface wave excitation is achieved when the group velocity of the lasers equals the phase velocity of the beat frequency SPW. At laser intensities of ~1014 W/cm2 at 10 μm wavelength, one may attain normalized surface wave amplitude ~ 0.03.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1967). Development of an optical waveguide in the propagation of light in a nonlinear medium. Sovt. Phys. JETP 24, 198201.Google Scholar
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sovt. Phys. Usp. 10, 609636.Google Scholar
Barnes, W.L., Dereux, A. & Ebbesen, T.W. (2003). Surface plasmon subwavelength optics. Nature (London) 424, 824.Google Scholar
Ditlbacher, H., Krenn, J.R., Schider, G., Leitner, A. & Aussenegg, F.R. (2002). Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electron. 33, 18791913.Google Scholar
Genoud, G., Cassou, K., Wojda, F., Ferrari, H.E., Kamperidis, C., Burza, M., Persson, A., Uhlig, J., Kneip, S., Mangles, S.P.D., Lifschitz, A., Cros, B. &. Wahlström, C.-G. (2011). Laser-plasma electron acceleration in dielectric capillary tubes. Appl. Phys. B 105, 309316.Google Scholar
Jeon, T.-I. & Grischkowsky, D. (2006). THz Zenneck surface wave (THz surface Plasmon) propagation on a metal sheet. Appl. Phys. Lett. 88, 061113061113.Google Scholar
Kadlec, F., Kuzel, P. & Coutaz, J.-L. (2005). Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 30, 14021404.Google Scholar
Kaganovich, D., Sasorov, P.V., Ehrlich, Y., Cohen, C. & Zigler, A. (1997). Investigations of double capillary discharge scheme for production of wave guide in plasma. Appl. Phys. Lett. 71, 29252927.Google Scholar
Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghdar, V. (2001). A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72.CrossRefGoogle ScholarPubMed
Kalmykov, S., Polomarov, O., Korobkin, D., Otwinowski, J., Power, J. & Shvets, G. (2006). Novel techniques of laser acceleration: From structures to plasmas. Philos. Trans. R. Soc. London Ser. A364, 725740.Google Scholar
Kameshima, T., Kotaki, H., Kando, M., Daito, I., Kawase, K., Fukunda, Y., Chen, L.M., Homma, T., Kondo, S., Esirkepov, T.Zh., Bobrova, N.A., Sasorov, P.V. & Bulanov, S.V. (2009). Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma. Phys. Plasmas 16, 093101093110.CrossRefGoogle Scholar
Kretschmann, E. (1971). The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313.Google Scholar
Kretschmann, E. & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. 23A, 21352136.CrossRefGoogle Scholar
Kumar, P. & Tripathi, V.K. (2013). Terahertz surface plasmons excitation by nonlinear mixing of lasers in over ultrathin metal film coated dielectric. J. Appl. Phys. 114, 053101053104.Google Scholar
Li, K., Stockman, M.I. & Bergman, D.J. (2003). Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402227404.CrossRefGoogle ScholarPubMed
Mork, J., Chen, Y. & Heuck, M. (2014). Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation. Phys. Rev. Lett. 113, 163901163905.CrossRefGoogle ScholarPubMed
Naseri, N., Pesme, D., Rozmus, W. & Popov, K. (2012). Channeling of relativistic laser pulses, surface waves, and electron acceleration. Phys. Rev. Lett. 108, 105001105004.Google Scholar
Nitikant, & Sharma, A.K. (2005). Capillary plasma formation by a laser. Phys. Scr. 71, 402405.Google Scholar
Schultz, S., Smith, D.R., Mock, J.J. & Schultz, D.A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 97, 9961001.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169.CrossRefGoogle Scholar
Steinhauer, L.C. & Kimura, W.D. (2003). Slow waves in microchannel metal waveguides and application to particle acceleration. Phys. Rev. ST Accel. Beams 6, 061302061310.Google Scholar
Suizu, K. & Kawase, K. (2007). Terahertz-wave generation in a conventional optical fiber. Opt. Lett. 32, 29902992.Google Scholar
Taton, T.A., Mirkin, C.A. & Letsinger, R.L. (2000). Scanometric DNA array detection with nanoparticle probes. Science 289, 17571760.Google Scholar
Welsh, G.H., Hunt, N.T. & Wynne, K. (2007). Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803026804.Google Scholar
Williams, C.R., Andrews, S.R., Maier, S.A., Fernández-Domínguez, A.I., Martín-Moreno, L. & García-Vidal, F.J. (2008). Highly confined guiding of terahertz surface plasmon polaritons on structured metal. Nat. Photonics 2, 175.Google Scholar