Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T12:23:17.725Z Has data issue: false hasContentIssue false

Incident ion charge state dependence of the visible light emission of Xeq+ ions bombarding aluminum

Published online by Cambridge University Press:  17 October 2016

Y. Guo
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China Institute of Modern Physics, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
Z. Yang*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
Q. Xu
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China Institute of Modern Physics, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
J. Ren
Affiliation:
Department of Applied Physics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
H. Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
Y. Zhao
Affiliation:
Department of Applied Physics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
*
Address correspondence and reprint requests to: Z. Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China. E-mail: [email protected]

Abstract

In this work, we studied the photon emission in the visible light range for Xeq+ ions of different charge states (10 ≤ q ≤ 21) bombardment on an aluminum target at 410 keV. During the interactions, the spectra in wavelength range 300–500 nm are recorded, including the photons from Al atoms and neutralized Xe+ ions. The yield of the visible light strongly depends on the projectile charge states. Its variation tendency with the charge states is similar to that of the potential energy variation. In addition, the experimental results also indicate that when the incident charge state is less than the critical charge state, it obeys the staircase classical-over-barrier model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bajales, N., Cristina, L., Mendoza, S., Baragiola, R.A., Goldberg, E.C. & Ferrón, J. (2008). Exciton autoionization in ion-induced electron emission. Phys. Rev. Lett. 100, 227604-1–4.CrossRefGoogle ScholarPubMed
Burgdörfer, J., Lerner, P. & Meyer, F. (1991). Above-surface neutralization of highly charged ions: The classical-over-the-barrier model. Phys. Rev. A 44, 56745685.CrossRefGoogle ScholarPubMed
Dietrich, K.-G., Hoffmann, D.H.H., Wahl, H., Haas, C.R., Kunze, H., Brandenburg, W. & Noll, R. (1990). Energy loss of heavy ions in a dense hydrogen plasma. Z. Phys. D – Atoms Molecules Clusters 16, 229230.CrossRefGoogle Scholar
Ducrée, J.J., Casali, F. & Thumm, U. (1998). Extended classical-over-barrier model for collisions of highly charged ions with conducting and insulating surfaces. Phys. Rev. A 57, 338350.CrossRefGoogle Scholar
Eriksson, K.B.S. & Isberg, H.B.S. (1963). The spectrum of atomic aluminum, Al I. Ark. Fys. (Stockholm) 23, 527542.Google Scholar
Golubev, A., Turtikov, V., Fertman, A., Roudskoy, I., Sharkov, B., Geissel, M., Neuner, U., Roth, M., Tauschwitz, A., WAHL, H., Hoffmann, D.H.H., Funk, U., Süß, W. & Jacoby, J. (2001). Experimental investigation of the effective charge state of ions in beam-plasma interaction. Nucl. Instr. Meth. Phys. Res., Sec. A 464, 247252.CrossRefGoogle Scholar
Hägg, L., Reinhold, C.O. & Burgdörfer, J. (1997). Above-surface neutralization of slow highly charged ions in front of ionic crystals. Phys. Rev. A 55, 20972108.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Korostiy, S., Ni, P., Pikuz, S.A., Rethfeld, B., Rosmej, O., Roth, M., Tahir, N.A., Udrea, S., Varentsov, D., Weyrich, K., Sharkov, B.Y. & Maron, Y. (2007). Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instr. Meth. Phys. Res., Sec. A 577, 813.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Jadoual, L., El Boujlaidi, A., Ait El Fqih, M., Aamouche, A. & Kaddouri, A. (2014). Optical emission from ion-bombarded nickel and nickel oxide. Spectrosc. Lett. 47, 363366.CrossRefGoogle Scholar
Kudo, M., Sakai, Y. & Ichinokawa, T. (2000). Dependencies of secondary electron yields on work function for metals by electron and ion bombardment. Appl. Phys. Lett. 76, 34753477.CrossRefGoogle Scholar
Lemell, C., Winter, H.P., Aumayr, F., Burgdörfer, J. & Meyer, F. (1996). Image acceleration of highly charged ions by metal surfaces. Phys. Rev. A 53, 880885.CrossRefGoogle ScholarPubMed
Mei, C.X., Zhao, Y.T., Zhang, X.A., Ren, J.R., Zhou, X.M., Wagn, X., Lei, Y., Liang, C.H., Li, Y.Z. & Xiao, G.Q. (2012). X-ray emission induced by 1.2–3.6 MeV Kr13+ ions. Laser Part. Beams 30, 665670.CrossRefGoogle Scholar
Niehaus, A. (1986). A classical model for multiple-electron capture in slow collisions of highly charged ions with atoms. J. Phys. B: At. Mol. Phys. 19, 29252937.CrossRefGoogle Scholar
Rajasekar, P., Scott, D. & Materer, N.F. (2006). Light emission from ion-bombarded Ge(100) surfaces under continuous germane and silane exposures. Nucl. Instr. Meth. Phys. Res., Sec. B 245, 411420.CrossRefGoogle Scholar
Ren, J.R., Zhao, Y.T., Zhou, X.M., Wang, X., Lei, Y., Xu, G., Cheng, R., Wang, Y.Y., Liu, S.D., Sun, Y.B. & Xiao., G.Q. (2015). Charge-state dependence of inner-shell processes in collisions between highly charged Xe ions and solids at intermediate energies. Phys. Rev. A 92, 062710-1–6.CrossRefGoogle Scholar
Ryufuku, H., Sasaki, K. & Watanabe, T. (1980). Oscillatory behavior of charge transfer cross sections as a function of the charge of projectiles in low-energy collisions. Phys. Rev. A 21, 745750.CrossRefGoogle Scholar
Sakurai, M., Sasaki, K., Miyamoto, T., Kato, D. & Sakaue, H.A. (2016). Potential effects in the interaction of highly charged ions with solid surfaces. e-J. Surf. Sci. Nanotech. 14, 13.CrossRefGoogle Scholar
Schenkel, T., Hamza, A.V., Barnes, A.V. & Schneider, D.H. (1999). Interaction of slow, very highly charged ions with surfaces. Prog. Surf. Sci. 61, 2384.CrossRefGoogle Scholar
Sekioka, T., Terasawa, M., Mitamura, T., Stockli, M.P., Lehnert, U. & Cocke, C.L. (1998). Electronic excitation effect in the sputtering of conductive materials bombarded by highly charged heavy ions. Nucl. Instr. Meth. B 146, 172177.CrossRefGoogle Scholar
Song, Z.Y., Yang, Z.H., Zhang, H.Q., Shao, J.X., Cui, Y., Zhang, Y.P., Zhang, X.A., Zhao, Y.T., Chen, X.M. & Xiao, G.Q. (2015). Rydberg-to-M-shell x-ray emission of hollow Xeq+ (q = 27–30) atoms or ions above metallic surfaces. Phys. Rev. A 91, 042707-1–7.CrossRefGoogle Scholar
Sporn, M., Libiseller, G., Neidhart, T., Schmid, M., Aumayr, F., Winter, H.P. & Varga, P. (1997). Potential sputtering of clean sio2 by slow highly charged ions. Phys. Rev. Lett. 79, 945948.CrossRefGoogle Scholar
Sun, L.T., Li, J.Y., Zhang, X.Z., Wang, H., Ma, B.H., Li, X.X., Feng, Y.C., Song, M.T., Zhu, Y.H., Zhao, L.M., Wang, P.Z., Liu, H.P., Zhao, H.W., Ma, X.W. & Zhan, W.L. (2007). Commissioning test of LAPECR2 source on the 320 kV HV platform. High Energy Phys. Nuclear Phys. 31(Suppl. I), 5559.Google Scholar
Walmsley, I., Waxer, L. & Dorrer, C. (2001). The role of dispersion in ultrafast optics. Rev. Sci. Instr. 72, 129.CrossRefGoogle Scholar
Wang, J.J., Zhang, J., Gu, J.G., Luo, X.W. & Hu, B.T. (2009). Highly charged Arq+ ions interacting with metals. Phys. Rev. A 80, 062902/1–9.CrossRefGoogle Scholar
Winter, H. & Aumayr, F. (2002). Slow multicharged ions hitting a solid surface: From hollow atoms to novel applications. Europhys. News 33, 215217.CrossRefGoogle Scholar
Xu, Z.F., Zeng, L.X., Zhao, Y.T., Wang, J.G., Wang, Y.Y., Zhang, X.A., Xiao, G.Q. & Li, F.L. (2012). Charge effect in secondary electron emission from silicon surface induced by slow neon ions. Laser Part. Beams 30, 319324.CrossRefGoogle Scholar
Zeng, L.X., Xu, Z.F., Zhao, Y.T., Wang, Y.Y., Wang, J.G., Cheng, R., Zhang, X.A., Ren, J.R., Zhou, X.M., Wang, X., Lei, Y., Li, Y.F., Yu, Y., Liu, X.L., Xiao, G.Q. & Li, F.L. (2012). Contribution from recoiling atoms in secondary electron emission induced by slow highly charged ions from tungsten surface. Laser Part. Beams 30, 707711.CrossRefGoogle Scholar
Zhang, X.A., Zhao, Y.T., Hoffmann, D.H.H., Yang, Z.H., Chen, X.M., Xu, Z.F., Li, F.L. & Xiao, G.Q. (2011). X-ray emission of Xe30+ ion beam impacting on Au target. Laser Part. Beams 29, 265268.CrossRefGoogle Scholar
Zhao, Y.T., Hu, Z.H., Cheng, R., Wang, Y.Y., Peng, H.B., Golubev, A., Zhang, X.A., Lu, X., Zhang, D.C., Zhou, X.M., Wang, X., Xu, G., Ren, J.R., Li, Y.F., Lei, Y., Sun, Y.B., Zhao, J.T., Wang, T.S., Wang, Y.N. & Xiao, G.Q. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.CrossRefGoogle Scholar
Zhao, Y.T., Xiao, G.Q., Zhang, X.A., Yang, Z.H., Zhang, Y.P., Chen, X.M., Zhang, H.Q., Cui, Y., Shao, J.X., Xu, X. & Li, F.L. (2005). Threshold kinetic energy for gold x-ray emission induced by highly charged ions. Int. J. Mod. Phys. B 19, 24862490.CrossRefGoogle Scholar