Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:18:07.943Z Has data issue: false hasContentIssue false

Hydrodynamics of layer-structured targets impinged by intense ion beams

Published online by Cambridge University Press:  09 March 2009

A. Barrero
Affiliation:
Escuela Técnica Superior de Ingenieros Industrials, Universidad de Sevilla, 41012 Sevilla, Spain

Abstract

A model for the hydrodynamics of a layer-structured target impinged by an intense ion beam is presented. For some power law time pulses, the flow in the absorber region, which is entirely different from that in the tamper, becomes self-similar for planar geometries. Scaling laws for the ablation pressure and the implosion velocity have been obtained from the analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangerter, R. O. & Meeker, D. J. 1976 UCRL-78474 Lawrence Livermore National Laboratory Report.Google Scholar
Barenblatt, G. I. 1979 Similarity, Self-Similarity, and Intermediate Asymptotics (Consultants Bureau, New York).CrossRefGoogle Scholar
Barrero, A. & Fernandez, A. 1987 Plasma Phys. and Contr. Fusion 29, No. 11, 16051613.Google Scholar
Barrero, A. & Sanmartín, J. R. 1977 Physics Fluids 20, 1155.CrossRefGoogle Scholar
Barrero, A. & Sanmartín, J. R. 1980 Physics Fluids 22, 617.Google Scholar
Clauser, M. J. et al. 1978 Phys. Rev. Lett. 38, 398.Google Scholar
Evans, R. G. 1981 Rutherford Appleton Lab. Report RL-81–022.Google Scholar
Fernandez, A. & Barrero, A. 1986 Plasma Phys. Contr. Fusion 28, 989.Google Scholar
Metzler, N. & Meyer-ter-Vehn, J. 1984 Laser and Particle Beams 2, 27.Google Scholar
Pert, G. J. 1987 Laser and Particle Beams 5, Part. 4, 643658.Google Scholar
Piriz, A. R. 1987 Plasma Phys. and Contr. Fusion, 29, No. 4, 565569.CrossRefGoogle Scholar
Sanmartín, J. R. & Barrero, A. 1978a Physics Fluids 21, 1957.Google Scholar
Sanmartín, J. R. & Barrero, A. 1978b Physics Fluids 21, 1967.CrossRefGoogle Scholar
Schmalz, R. F. 1986 Phys. Fluids 29, No. 5, 13891397.CrossRefGoogle Scholar
Sedov, L. I. 1959 Similarity and Dimensional Methods in Mechanics, Academic, New York.Google Scholar
Shearer, J. W. 1975 Nucl. Fusion 15, 952.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1983 Nucl. Fusion 23, 887.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1986a Physics Fluids 29, 275.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1986b Physics Fluids 29, 4204.CrossRefGoogle Scholar
Velarde, G. et al. 1984 Research Reports on Inertial Confinement Fusion of the Department of Nuclear Energy, Politechnical University of Madrid Denin 025 (Jan. 1985).Google Scholar
Velazquez, A. & Barrero, A. 1988 Plasma Phys. and Contr. Fusion 30, 311.CrossRefGoogle Scholar
Zeldovich, Y. B. & Raizer, Y. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic, New York.Google Scholar