Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T22:03:22.140Z Has data issue: false hasContentIssue false

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction

Published online by Cambridge University Press:  31 August 2016

J. Mu
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
F.-Y. Li
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
Z.-M. Sheng*
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
J. Zhang
Affiliation:
Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
*
Address correspondence and reprint requests to: Z.-M. Sheng, Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK. E-mail: [email protected]

Abstract

The effect of transverse magnetic fields on surface high-harmonic generation in intense laser–solid interactions is investigated. It is shown that the longitudinal motion of electrons can be coupled with the transverse motion via the magnetic fields, which lead to even-order harmonics under normal laser incidence. The dependence of the coupling efficiency and hence even harmonic generation with preplasma scale length and magnetic field strength are presented based upon particle-in-cell simulations. When the magnetic field is parallel to the laser electric field, the spectral intensity of the second harmonic is proportional to the magnetic field strength in a wide range up to 160 MG, while the situation with the magnetic field perpendicular to the laser electric field is more complicated. The second harmonic generation due to the magnetic field also tends to increase with the plasma density scale lengths, which is different from the high-harmonic generation by the oscillating mirror mechanism. With the increase of the laser spot size from a laser wavelength λL, both the magnetic field-induced harmonics and oscillating mirror high harmonics tend to increase first and then become saturated after 3λL. The magnetic field-induced second harmonic may be used to evaluate large self-generated magnetic fields developed near the critical density region and the preplasma conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An der Brügge, D., Kumar, N., Pukhov, A. & Rödel, C. (2012). Influence of surface waves on plasma high-order harmonic generation. Phys. Rev. Lett. 108, 125002.Google Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Dollar, F., Cummings, P., Chvykov, V., Willingale, L., Vargas, M., Yanovsky, V., Zulick, C., Maksimchuk, A., Thomas, A. & Krushelnick, K. (2013). Scaling high-order harmonic generation from laser–solid interactions to ultrahigh intensity. Phys. Rev. Lett. 110, 175002.Google Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser–solid interactions. Laser Part. Beams 27, 243248.Google Scholar
Földes, I., Kocsis, G., Racz, E., Szatmari, S. & Veres, G. (2003). Generation of high harmonics in laser plasmas. Laser Part. Beams 21, 517521.Google Scholar
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In International Conference on Computational Science, pp. 342351. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.Google Scholar
Gizzi, L., Giulietti, D., Giulietti, A., Audebert, P., Bastiani, S., Geindre, J.-P. & Mysyrowicz, A. (1996). Simultaneous measurements of hard × rays and second-harmonic emission in fs laser–target interactions. Phys. Rev. Lett. 76, 2278.CrossRefGoogle ScholarPubMed
Kahaly, S., Monchocé, S., Vincenti, H., Dzelzainis, T., Dromey, B., Zepf, M., Martin, P. & Quéré, F. (2013). Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001.CrossRefGoogle ScholarPubMed
Kahaly, S., Mondal, S., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P. (2009). Polarimetric detection of laser induced ultrashort magnetic pulses in overdense plasma. Phys. Plasmas 16, 043114.CrossRefGoogle Scholar
Lichters, R., Meyer-ter Vehn, J. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.CrossRefGoogle Scholar
Ma, T., Sawada, H., Patel, P.K., Chen, C.D., Divol, L., Higginson, D.P., Kemp, A.J., Key, M.H., Larson, D.J., Le Pape, S., Link, A., MacPhee, A.G., McLean, H.S., Ping, Y., Stephens, R.B., Wilks, S.C. & Beg, F.N. (2012). Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition. Phys. Rev. Lett. 108, 115004.Google Scholar
MacPhee, A.G., Divol, L., Kemp, A.J., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Hey, D.S., Fedosejevs, R.J., Freeman, R.R., Henesian, M., Key, M.H., Le Pape, S., Link, A., Ma, T., Mackinnon, A.J., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stephens, R.B., Tabak, M., Town, R., Tsui, Y.Y., Van Woerkom, L.D., Wei, M.S. & Wilks, S.C. (2010). Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett. 104, 055002.Google Scholar
Mairesse, Y., De Bohan, A., Frasinski, L.J., Merdji, H., Dinu, L.C., Monchicourt, P., Breger, P., Kovac̆ev, M., Taeb, R., Carré, B., Muller, H.G., Agostini, P. & Salières, P. (2003). Attosecond synchronization of high-harmonic soft x-rays. Science 302(5650), 15401543.Google Scholar
Mason, R. & Tabak, M. (1998). Magnetic field generation in high-intensity-laser–matter interactions. Phys. Rev. Lett. 80, 524.Google Scholar
Ozaki, T., Elouga Bom, L., Ganeev, R., Kieffer, J.-C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.-P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.Google Scholar
Sheng, Z.-M., Mima, K., Zhang, J. & Sanuki, H. (2005). Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.CrossRefGoogle ScholarPubMed
Stambulchik, E., Tsigutkin, K. & Maron, Y. (2007). Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett. 98, 225001.Google Scholar
Sudan, R.N. (1993). Mechanism for the generation of 109 g magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70, 30753078.Google Scholar
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.-S., Zepf, M. & Krushelnick, K. (2002). Laser technology: measuring huge magnetic fields. Nature 415(6869), 280280.Google Scholar
Tsakiris, G.D., Eidmann, K., Meyer-ter Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.Google Scholar
Weng, S., Murakami, M. & Sheng, Z. (2015). Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser Part. Beams 33, 103107.CrossRefGoogle Scholar
Yeung, M., Bierbach, J., Eckner, E., Rykovanov, S., Kuschel, S., Sävert, A., Förster, M., Rödel, C., Paulus, G.G., Cousens, S., Coughlan, M., Dromey, B. & Zepf, M. (2015). Noncollinear polarization gating of attosecond pulse trains in the relativistic regime. Phys. Rev. Lett. 115, 193903.Google Scholar
Zepf, M., Castro-Colin, M., Chambers, D., Preston, S.G., Wark, J.S., Zhang, J., Danson, C.N., Neely, D., Norreys, P., Dangor, A.E., Dyson, A., Lee, P., Fews, A.P., Gibbon, P., Moustaizis, S. & Key, M.H. (1996). Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Phys. Plasmas 3, 32423244.CrossRefGoogle Scholar
Zheng, J., Tanaka, K., Sentoku, Y., Offenberger, A., Kitagawa, Y., Kodama, R., Kurahashi, T., Mima, K. & Yamanaka, T. (2002). Harmonic emission with cyclotron satellite structure due to strong magnetic fields produced by ultra-intense laser–plasma interaction. Phys. Plasmas 9, 31933196.CrossRefGoogle Scholar