Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T05:38:20.613Z Has data issue: false hasContentIssue false

Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons

Published online by Cambridge University Press:  24 June 2009

R. Prasad
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
R. Singh*
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
V.K. Tripathi
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Rohtash Singh, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: [email protected]

Abstract

The presence of an axial magnetic field in a laser beat wave accelerator enhances the oscillatory velocity of electrons due to cyclotron resonance effect leading to higher amplitude of the ponderomotive force driven plasma wave, and higher energy of accelerating electrons. The axial magnetic field inhibits the transverse escape of electrons and thus causes a growth of the interaction length. The surfatron acceleration of electrons also shows a similar enhancement. A surfatron transverse magnetic field deflects the electrons parallel to the phase fronts of the accelerating wave keeping them in phase with it. However, the electron continues to move away radially.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balakirev, V.A., Karas, I.V., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.CrossRefGoogle Scholar
Balakirev, V.A., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Ebrahim, N.A. (1994). Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76, 76457647.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, , Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C.S., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevicv, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hogan, M.J., Bames, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Mugglli, P., O'connell, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma wakefield-accelerator. Phys. Rev. Lett. 95, 054802.CrossRefGoogle Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma inter-action. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Joshi, C. (2007). The development of laser and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51, 392395.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Li, B., Ishiguro, S.M., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1994). Interaction of Electromagnetic Waves with Electron Beams and Plasma. Singapore: World Scientific.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance and short pulse laser. Phys. of Plasmas 12, 4310343108.CrossRefGoogle Scholar
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasmafilled channels. Laser Part. Beams, 19, 219222.CrossRefGoogle Scholar
Malik, H.K. (2007). Oscillating two stream instability of a plasma wave in a negative ion containing plasma with hot and cold positive ions. Laser Part. Beams 25, 397406.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
McClements, K.G., Dieckmann, M.E., Ynnerman, A., Chapman, S.C. & Dendy, R.O. (2001). Surfatron and stochastic acceleration of electrons at supernova remnant shocks. Phys. Rev. Lett. 87, 255002.CrossRefGoogle ScholarPubMed
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Nakamura, K. (2000). Particle acceleration by ultraintense laser interactions with beam and plasmas. Laser Part. Beams, 18, 519528.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokolink, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andrew, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Pukhov, A., Gordienko, S., Kiselev, S. & Kostyukov, I. (2004). The bubble regime of laser-plasma acceleration: monoenergetic electrons and scalability. Plasma Phys. Contr. Fusion 44, B179B186.CrossRefGoogle Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Reitsma, A.J.W., Cairns, R.A., Bingham, R. & Jaroszynski, D.A. (2005). Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085004.CrossRefGoogle ScholarPubMed
Robinson, C.G., Geddes, E., Leemans, W., Michel, P., Nagler, B., Nakakmura, K., Plateau, G., Schroeder, C.B., Shadwick, B., Toth, C., Tilborg, J.V., Hooker, S., Bruhwiler, D.L., Cary, J.R. & Michel, E. (2006). Low energy spread 100 MeV-1 GeV electron bunches from laser wake field acceleration. Loasis. Proceeding of LINAC 2006, Tennessee, Kentucky.Google Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of Plasma waves by Two Laser Beams. Phys. Rev. Lett. 29, 701.CrossRefGoogle Scholar
Schroeder, C.B., Esarey, E., Shadwick, B.A. & Leemans, W.P. (2006). Trapping, dark current, and wave breaking in nonlinear plasma waves. Phys. Plasmas 13, 33103.CrossRefGoogle Scholar
Shi, Y.-J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Singh, K.P., Gupta, V.L., Bhasin, L. & Tripathi, V.K. (2003). Electron acceleration by a plasma wave in a sheared magnetic field. Phys. Plasmas 10, 14931499.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1992). Interaction of ultrahigh laser fields with beams and plasmas. Phys. Fluids B 4, 22412248.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463.CrossRefGoogle ScholarPubMed
Tazima, T. & Dawson, M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.CrossRefGoogle Scholar
Tripathi, V.K., Taguchi, T. & Liu, C.S. (2005). Plasma channel charging by an intense short pulse laser and ion Coulomb explosion. Phys. Plasmas 12, 43106–7.CrossRefGoogle Scholar
Xie, B.-S., Aimidula, A., Niu, J.-S., Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.CrossRefGoogle Scholar
Yugami, N., Kikuta, K. & Nishida, Y. (1996). Electron acceleration by a transverse electromagnetic wave supplemented with a crossed static magnetic field. Phys. Rev. Lett. 76, 1635.CrossRefGoogle ScholarPubMed