Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T05:39:58.838Z Has data issue: false hasContentIssue false

Defects in quantum ring to control high-harmonic spectrum

Published online by Cambridge University Press:  23 January 2017

E. Fiordilino
Affiliation:
Dipartimento di Fisica e Chimica, Università degli Studi Palermo, Via Archirafi 36, 90123, Palermo, Italy
B. Frusteri*
Affiliation:
Dipartimento di Fisica e Chimica, Università degli Studi Palermo, Via Archirafi 36, 90123, Palermo, Italy
*
Address correspondence and reprint requests to: B. Frusteri, Dipartimento di Fisica e Chimica, Università degli Studi Palermo, Via Archirafi 36, 90123, Palermo, Italy. E-mail: [email protected]

Abstract

The high-harmonic generation from a structured quantum ring (SQR) driven by an intense laser field is presented within the single active electron approximation. The spectrum is studied by varying the symmetry of the physical system. The standard SQR (six identical and equidistant dots in a ring) presents a 60° rotational symmetry, that in this work is broken, moving or changing only one potential hole. We find that careful designed breaking of the geometrical symmetry of the SQR opens the possibility of controlling the characteristics of the harmonic lines such as intensity and polarization. HHG analysis of the emission spectrum performed through a Morlet wavelet, shows that the high-frequency emission occurs during short time intervals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allaria, E., Callegari, C., Cocco, D., Fawley, W.M., Kiskinova, M., Masciovecchio, C. & Parmigiani, F. (2010). The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system and applications. New J. Phys. 12, 075002.Google Scholar
Alon, O.E., Averbukh, V. & Moiseyev, N. (1998). Selection rules for the high harmonic generation spectra. Phys. Rev. Lett. 80, 3743.Google Scholar
Antoine, P., L'Huillier, A. & Lewenstein, M. (1996). Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234.CrossRefGoogle ScholarPubMed
Baer, R., Neuhauser, D., Ždánská, P.R. & Moiseyev, N. (2003). Ionization and high-order harmonic generation in aligned benzene by a short intense circularly polarized laser pulse. Phys. Rev. A 68, 043406.Google Scholar
Bâldea, I., Gupta, A.K., Cederbaum, L.S. & Moiseyev, N. (2004). High-harmonic generation by quantum-dot nanorings. Phys. Rev. B 69, 245311.Google Scholar
Bauer, D. (1997). Two-dimensional, two-electron model atom in a laser pulse: Exact treatment, single-active-electron analysis, time-dependent density-functional theory, classical calculations, and nonsequential ionization. Phys. Rev. A 56, 3028.Google Scholar
Born, M. & Wolf, E. (2000). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: CUP.Google Scholar
Brandi, F., Neshev, D. & Ubachs, W. (2003). High-order harmonic generation yielding tunable extreme-ultraviolet radiation of high spectral purity. Phys. Rev. Lett. 91, 163901.Google Scholar
Castiglia, G., Corso, P.P., Cricchio, D., De Giovannini, U., Frusteri, B. & Fiordilino, E. (2016). Classical chaos and harmonic generation in laser driven nanorings. J. Phys. B - At. Mol. Opt. 49, 245601.Google Scholar
Castiglia, G., Corso, P.P., De Giovannini, U., Fiordilino, E. & Frusteri, B. (2015). Laser driven structured quantum rings. J. Phys. B – At. Mol. Opt. 48, 115401.Google Scholar
Chang, Z. (2004). Single attosecond pulse and XUV supercontinuum in the high-order harmonic plateau. Phys. Rev. A 70, 043802.Google Scholar
Chui, C.K. (2014). An Introduction to Wavelets, Vol. 1, Boston: Academic Press.Google Scholar
Ciappina, M.F., Becker, A. & Jaroń-Becker, A. (2008). High-order harmonic generation in fullerenes with icosahedral symmetry. Phys. Rev. A 78, 063405.Google Scholar
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994.Google Scholar
Crawford-Uranga, A., De Giovannini, U., Räsänen, E., Oliveira, M.J.T., Mowbray, D.J., Nikolopoulos, G.M., Karamatskos, E.T., Markellos, D., Lambropoulos, P., Kurth, S. & Rubio, A. (2014). Time-dependent density-functional theory of strong-field ionization of atoms by soft X rays. Phys. Rev. A 90, 033412.Google Scholar
Cricchio, D. & Fiordilino, E. (2014). Harmonic generation from nanorings driven by a two-color laser field. Laser Phys. Lett. 11, 066002.Google Scholar
Cricchio, D. & Fiordilino, E. (2016). Wavelet analysis and HHG in nanorings: Their applications in logic gates and memory mass devices. Nanoscale 8, 19681974.Google Scholar
Daniele, R., Castiglia, G., Corso, P.P., Fiordilino, E., Morales, F. & Orlando, G. (2009). Nuclear molecular dynamics investigated by using high-order harmonic generation spectra. J. Mod. Opt. 56, 751757.Google Scholar
Daniele, R. & Fiordilino, E. (1996). Bremsstrahlung and harmonic generation in laser-assisted electron–nucleus collision. Nuovo Cimento D 18, 547556.Google Scholar
De Luca, S. & Fiordilino, E. (1996). Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse. J. Phys. B – At. Mol. Opt. 29, 32773292.Google Scholar
Di Piazza, A. & Fiordilino, E. (2001). Why hyper-Raman lines are absent in high-order harmonic generation. Phys. Rev. A 64, 013802.Google Scholar
Eden, J.G. (2004). High-order harmonic generation and other intense optical field–matter interactions: review of recent experimental and theoretical advances. Progr. Quantum Electron. 28, 197246.Google Scholar
Farkas, G. & Tóth, C. (1992). Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168, 447450.Google Scholar
Fiordilino, E., Morales, F., Castiglia, G., Corso, P.P., Daniele, R. & Strelkov, V.V. (2017). High-order harmonic generation via bound–bound transitions in an elliptically polarized laser field. J. Opt. Soc. Am. B 34, 26732681.Google Scholar
Ganeev, R.A., Elouga Bom, L.B., Wong, M.C.H., Brichta, J.P., Bhardwaj, V.R., Redkin, P.V., & Ozaki, T. (2009). High-order harmonic generation from C60-rich plasma. Phys. Rev. A 80, 043808.Google Scholar
Ganeev, R., Suzuki, M., Baba, M., Kuroda, H. & Ozaki, T. (2005). High-order harmonic generation from boron plasma in the extreme-ultraviolet range. Opt. Lett. 30, 768770.Google Scholar
Ganeev, R.A., Witting, T., Hutchison, C., Frank, F., Redkin, P.V., Okell, W.A., Lei, D.Y., Roschuk, T., Maier, S.A., Marangos, J.P. & Tisch, J.W.G. (2012). Enhanced high-order-harmonic generation in a carbon ablation plume. Phys. Rev. A 85, 015807.Google Scholar
Gavrila, M. (1992). Atoms in Intense Laser Fields. Boston: Academic Press.Google Scholar
Guo, Q., Kim, S.J., Kar, M., Shafarman, W.N., Birkmire, R.W., Stach, E.A., Agrawal, R. & Hillhouse, H.W. (2008). Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8, 29822987.Google Scholar
Heinrich, A., Kornelis, W., Anscombe, M.P., Hauri, C.P., Schlup, P., Biegert, J. & Keller, U. (2006). Enhanced VUV-assisted high harmonic generation. J. Phys. B – At. Mol. Opt. 39, S275.Google Scholar
Hinsche, N.F., Moskalenko, A.S. & Berakdar, J. (2009). High-order harmonic generation by a driven mesoscopic ring with a localized impurity. Phys. Rev. A 79, 023822.Google Scholar
Hoffmann, M., Kärnbratt, J., Chang, M.H., Herz, L.M., Albinsson, B. & Anderson, H.L. (2008). Enhanced π conjugation around a porphyrin [6] nanoring. Angew. Chem. 120, 50715074.Google Scholar
Jackson, J.D. (1999). Classical Electrodynamics. New York: Wiley.Google Scholar
Kouwenhoven, L.P., Austing, D.G. & Tarucha, S. (2001). Few-electron quantum dots. Rep. Progr. Phys. 64, 701.Google Scholar
Krausz, F. & Ivanov, M. (2009). Attosecond physics. Rev. Mod. Phys. 81, 163.Google Scholar
Lein, M. (2005). Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004.Google Scholar
Lewenstein, M., Balcou, P., Ivanov, M.Y., L'Huillier, A. & Corkum, P.B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117.Google Scholar
L'Huillier, A., Schafer, K.J. & Kulander, K.C. (1991). Theoretical aspects of intense field harmonic generation. J. Phys. B – At. Mol. Opt. 24, 3315.Google Scholar
Lu, R.F., He, H.X., Guo, Y.H. & Han, K.L. (2009). Theoretical study of single attosecond pulse generation with a three-colour laser field. J. Phys. B – At. Mol. Opt. 42, 225601.Google Scholar
Orlando, G., Castiglia, G., Corso, P.P. & Fiordilino, E. (2008). Bremsstrahlung from a repulsive potential: attosecond pulse generation. J. Phys. B – At. Mol. Opt. 41, 055601.Google Scholar
Orlando, G., Corso, P.P., Fiordilino, E. & Persico, F. (2009 a). Generation of isolated attosecond pulses using unipolar and laser fields. J. Mod. Opt. 56, 17611767.CrossRefGoogle Scholar
Orlando, G., Corso, P.P., Fiordilino, E. & Persico, F. (2009 b). A three-colour scheme to generate isolated attosecond pulses. J. Phys. B – At. Mol. Opt. 43, 025602.Google Scholar
O'Sullivan, M.C., Sprafke, J.K., Kondratuk, D.V., Rinfray, C., Claridge, T.D.W., Saywell, A., Blunt, M.O., O'Shea, J.N., Beton, P.H., Malfois, M., Anderson, H.L. (2011). Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 7275.Google Scholar
Ozaki, T., Elouga Bom, L.B., Abdul-Hadi, J. & Ganeev, R. (2010). Evidence of strong contribution from neutral atoms in intense harmonic generation from nanoparticles. Laser Part. Beams 28, 6974.Google Scholar
Ozaki, T., Elouga Bom, L.B., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.Google Scholar
Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Augé, F., Balcou, P., Muller, H.G. & Agostini, P. (2001). Observation of a train of attosecond pulses from high harmonic generation. Science 292, 16891692.Google Scholar
Rundquist, A., Durfee, C.G., Chang, Z., Herne, C., Backus, S., Murnane, M.M. & Kapteyn, H.C. (1998). Phase-matched generation of coherent soft X-rays. Science 280, 14121415.Google Scholar
Schafer, K.J., Yang, B., DiMauro, L.F. & Kulander, K.C. (1993). Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599.Google Scholar
Solanpää, J., Budagosky, J.A., Shvetsov-Shilovski, N.I., Castro, A., Rubio, A. & Räsänen, E. (2014). Optimal control of high-harmonic generation by intense few-cycle pulses. Phys. Rev. A 90, 053402.Google Scholar
Strelkov, V. (2010). Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production. Phys. Rev. Lett. 104, 123901.Google Scholar
van Kouwen, M.P., Reimer, M.E., Hidma, A.W., van Weert, M.H.M., Algra, R.E., Bakkers, E.P., Kouwenhoven, L.P. & Zwiller, V. (2010). Single electron charging in optically active nanowire quantum dots. Nano Lett. 10, 18171822.Google Scholar
Wang, Z.L. (2004). Nanostructures of zinc oxide. Mater. Today 7, 2633.Google Scholar
Xie, X., Scrinzi, A., Wickenhauser, M., Baltuška, A., Barth, I. & Kitzler, M. (2008). Internal momentum state mapping using high harmonic radiation. Phys. Rev. Lett. 101, 033901.Google Scholar
Zepf, M., Dromey, B., Landreman, M., Foster, P. & Hooker, S.M. (2007). Bright quasi-phase-matched soft-x-ray harmonic radiation from argon ions. Phys. Rev. Lett. 99, 143901.Google Scholar
Zhukovsky, K. (2016). Emission and tuning of harmonics in a planar two-frequency undulator with account for broadening. Laser Part. Beams 34, 447456.Google Scholar
Zuo, T., Bandrauk, A.D., Ivanov, M. & Corkum, P.B. (1995). Control of high-order harmonic generation in strong laser fields. Phys. Rev. A 51, 3991.Google Scholar