Article contents
Characterization of electron density of states in laser-superposed channeling regime
Published online by Cambridge University Press: 10 October 2014
Abstract
We present low-dimensional functionalization and characterization of electron density of states using highly correlated/precisely guided proton beam trajectories and a silicon nanocrystal as a target, representing at a same time a versatile nanolaser technique capable for coherent control of atomic quantum states and for scanning the interior of an atom with resolution comparable to 10% of the Bohr radius.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2014
References
REFERENCES
Abramowitz, M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. New York: Dover Publications, 896.Google Scholar
Appleton, B.R., Erginsoy, C. & Gibson, W.M. (1967). Channeling effects in the energy loss of 3-11-MeV protons in silicon and germanium single crystals. Phys. Rev. 161, 330.Google Scholar
Appleton, B.R., Moak, C.D., Noggle, T.S. & Barrett, J.H. (1972). Hyperchanneling, an axial channeling phenomenon. Phys. Rev. Lett. 28, 1307.Google Scholar
Barrett, J.H., Appleton, B.R., Noggle, T.S., Moak, C.D. Biggerstaff, J.A., Datz, S. & Behrisch, R. (1975). Hyperchanneling. In Atomic Collisions in Solids (Datz, S., Appleton, B.R. & Moak, C.D., Eds.). New York: Springer, pp 645–668.Google Scholar
Batterman, B.W. & Chipman, D.R. (1962). Vibrational amplitudes in germanium and silicon. Phys. Rev. 127, 690.Google Scholar
Berec, V. (2012). Quantum entanglement and spin control in silicon nanocrystal. Plos One 7, e45254.Google Scholar
Bransden, B.H., McCarthy, E, Mitroy, J.D. & Stelbovics, A.T. (1985). Extended coupled-channels calculations for electron-hydrogen scattering. Phys. Rev. A 32, 1.Google Scholar
Breese, M.B.H., Jamieson, D.N. & King, P.J.C. (1996). Materials Analysis Using a Nuclear Microprobe. New York: Wiley.Google Scholar
Dang, Z.Y., Motapothula, M., Ow, Y.S., Venkatesan, T., Breese, M.B.H., Rana, M.A. & Osman, A. (2011). Fabrication of large-area ultra-thin single crystal silicon membranes. Appl. Phys. Lett. 99, 223105.Google Scholar
Demkov, Y. Meyer, J.D. (2004). A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions. Euro. Phys. J. B 42, 361–365.Google Scholar
Fujimoto, F., Komaki, K., Ozawa, K., Mannami, M. & Sakurai, T. (1969). Temperature effects on channeling of protons in silicon crystal. Phys. Lett. A 29, 332.Google Scholar
Gavrila, M. (2002). Atomic stabilization in superintense laser fields. J. Phys. B: At. Mol. Opt. Phys. 35 R147–R193.Google Scholar
Krause, H.F., Barrett, J.H., Datz, S., Dittner, P.F., Jones, N.L., Gomez, del Campo J. & Vane, C.R. (1994). Angular distribution of ions axially channeled in a very thin crystal: Experimental and theoretical results. Phys. Rev. A 49, 283.Google Scholar
Krause, H.F. & Datz, S. (1996). Channeling of Heavy Ions through Crystalline Lattices. In Advances in Atomic, Molecular, and Optical Physics. New York: Academic, New York, Vol. 37, p. 139.Google Scholar
Krause, H.F., Datz, S., Dittner, P.F., Gomez, del Campo J., Miller, P.D., Moak, C.D., Nešković, N. & Pepmiller, P.L. (1986). Rainbow effect in axial ion channeling. Phys. Rev. B 33, 6036.Google Scholar
Kumakhov, M.A. (1972 a). A theory of flux peaking effect in channeling. Radiat. Effects 15, 85–99.Google Scholar
Kumakhov, M.A. (1972 b). Possibility of exact determination of impurity atom position by means of channelling effect. Doklady Akademii Nauk Sssr. 203(4).Google Scholar
Liang, D. & Bowers, J.E. (2010). Recent progress in lasers on silicon. Nat. Photon. 4, 511–517.Google Scholar
Lindhard, J. (1965). Influence of crystal lattice on motion of energetic charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 34(14).Google Scholar
Motapothula, M., Dang, Z.Y., Venkatesan, T., Breese, M.B.H., Rana, M.A. & Osman, A. (2012 a). Axial ion channeling patterns from ultra-thin silicon membranes. Nucl. Instr. and Meth. B 283, 29–34.Google Scholar
Motapothula, M., Dang, Z.Y., Venkatesan, T., Breese, M.B.H., Rana, M.A. & Osman, A. (2012 b). Influence of the narrow <111> planes on axial and planar ion channeling. Phys. Rev. Lett. 108, 195502.+planes+on+axial+and+planar+ion+channeling.+Phys.+Rev.+Lett.+108,+195502.>Google Scholar
Motapothula, M. (2013). Ion Channeling in ultra thin crystals. PhD Thesis. National University of Singapore.Google Scholar
Nye, J.F. (1999). Natural Focusing and Fine Structure of Light. Bristol: Institute of Physics Publishing.Google Scholar
Parker, T.S. & Chua, L.O. (1989). Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, pp. 278–296.Google Scholar
Reiss, H. (2001). Dependence on frequency of strong-field atomic stabilization. Opt. Exp. 8, 99–105.Google Scholar
Smolders, P.J.M. & Boerma, D.O. (1987). Computers simulation of channeling in single crystals. Nucl. Instr. Meth. B 29, 471–489. http://members.home.nl/p.j.m.smulders/FLUX/HTML/#flux7_and_related_programs.Google Scholar
Tavernier, S. (2010). Experimental Techniques in Nuclear and Particle Physics. Berlin: Springer-Verlag, 30.Google Scholar
Tikhonova, O.V., Volkova, E.A. & Skurikhin, A.V. (2002). Kramers-Henneberger Stabilization of 3D Quantum System with a Short-Range Potential. Laser Phys. 12, 424–428.Google Scholar
Thompson, J. (1988). Coupled channels methods for nuclear physics. Comp. Phys. Rep. 7, 167–212.Google Scholar
van Druten, N.J., Constantinescu, R.C., Schins, J.M., Nieuwenhuize, H. & Muller, H.G. (1997). Adiabatic stabilization: Observation of the surviving population. Phys. Rev. A 55, 622–629.Google Scholar
Zuo, J.M., Kim, M., O'Keeffe, M. & Spence, J.C.H. (1999). Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nat. 401, 49–52.Google Scholar
A correction has been issued for this article:
- 7
- Cited by
Linked content
Please note a has been issued for this article.