Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:57:10.121Z Has data issue: false hasContentIssue false

Backward runaway electrons in a subnanosecond air discharge at atmospheric pressure

Published online by Cambridge University Press:  13 November 2015

Victor F. Tarasenko
Affiliation:
Russian Academy of Science, Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia
Igor' D. Kostyrya
Affiliation:
Russian Academy of Science, Institute of High Current Electronics, Tomsk 634055, Russia
Dmitry V. Beloplotov*
Affiliation:
Russian Academy of Science, Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia
*
Address correspondence and reprint requests to: Dmitry V. Beloplotov, Russian Academy of Science, Institute of High Current Electronics, Akademichesky Ave. 2/3, Tomsk 634055, Russia. E-mail: [email protected]

Abstract

In the paper, we study the conditions for the generation of backward runaway electrons through a grounded grid cathode in atmospheric pressure air at high-voltage pulses with a full width at half maximum of 1 ns and risetime of 0.3 ns applied to the gap from a SLEP-150 pulser. The study confirms that backward runaway electrons and X-rays do arise near grid cathodes in atmospheric pressure air. It is shown that the current of the backward beam and the X-rays from the gas diode depend differently on the interelectrode distance. The average X-ray exposure dose in a pulse is more than 3.5 mR.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, S.B., Baksht, E.Kh., Boichenko, A.M., Kostyrya, I.D., Tarasenko, V.F. & Tkachev, A.N. (2012). X-ray radiation and runaway electron beam spectra at a nanosecond discharge in atmospheric-pressure air. Tech. Phys. 57, 11921198.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I., Rybka, D.V., Shulepov, M.A. & Tarasenko, V.F. (2009). Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application. J. Phys. D: Appl. Phys. 42, 185201.CrossRefGoogle Scholar
Baksht, E.Kh., Kozyrev, A.V., Kostyrya, I.D., Rybka, D.V. & Tarasenko, V.F. (2013). Fast electrons behind the plane-grid cathode at nanosecond discharge in atmospheric pressure air. High Volt. Eng. 39, 21382144.Google Scholar
Bokhan, P.A. & Sorokin, A.P. (1985 a). Open discharge and electron beam generation: Mechanisms, properties, and use for laser pumping of average pressure). J. Tech. Phys. 55, 8895. (in Russian).Google Scholar
Bokhan, P.A. & Sorokin, A.P. (1985 b). Electron beam formation in an overcharged layer in a gas discharge at average pressure. J. Tech. Phys. 55, 11681170. (in Russian).Google Scholar
Kostyrya, I.D., Rybka, D.V. & Tarasenko, V.F. (2012). The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure. Instrum. Exp. Tech. 55, 7277.Google Scholar
Kostyrya, I.D., Rybka, D.V., Tarasenko, V.F., Kozyrev, A.V. & Baksht, E.Kh. (2013). Occurrence of runway electrons behind the cathode under subnanosecond breakdown of air at atmospheric pressure. Rus. Phys. J. 55, 14931496.Google Scholar
Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyev, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N. & Tarasenko, V.F. (2015). Reconstruction of electron beam energy spectra for vacuum and gas diodes. Laser Part. Beams 33, 183192.CrossRefGoogle Scholar
Levko, D., Krasik, Ya.E. & Tarasenko, V.F. (2012). Present status of runaway electron generation in pressurized gases during nanosecond discharges. Int. Rev. Phys. (IREPHY) 6, 165195.Google Scholar
Mesyats, G.A., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2011). On the observed energy of runaway electron beams in air. Laser Part. Beams 29, 425435.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, Ch., Baksht, E.Kh., Yan, P. & Shut'ko, YuV. (2012). Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation. Laser Part. Beams 30, 369378.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, Ch., Beloplotov, D.V., Yang, W., Lomaev, M.I., Zhou, Zh., Sorokin, D.A. & Yan, P. (2014). Abnormal polarity effect in nanosecond-pulse breakdown of SF6 and nitrogen. Phys. Lett. A 378, 18281833.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, Ch., Burachenko, A.G., Rybka, D.V., Kostyrya, I.D., Lomaev, M.I., Baksht, E.Kh. & Yan, P. (2013). Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field. Rev. Sci. Instrum. 84, 053506.Google Scholar
Tarasenko, V.F. (2011). Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air. Plasma Phys. Rep. 37, 409421.Google Scholar
Tarasenko, V.F. (Ed.). (2014). Runaway Electron Preionized Diffuse Discharges. New York, USA, Published by Nova Science Publishers, Inc.Google Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 a). Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure. Plasma Dev. Oper. 16, 267298.Google Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 b). Supershort avalanche electron beam generation in gases. Laser Part. Beams 26, 605617.Google Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2010). Supershort avalanche electron beams and x-rays in atmospheric-pressure air. IEEE Trans. Plasma Sci. 38, 741750.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Erofeev, M.V., Kostyrya, I.D., Rybka, D.V. & Shutko, Y.V. (2013). New features of the generation of runaway electrons in nanosecond discharges in different gases. IEEE Trans. Plasma Sci. 41, 29312940.CrossRefGoogle Scholar
Tarasenko, V.F., Kostyrya, I.D., Baksht, E.Kh. & Rybka, D.V. (2011). SLEP-150M compact supershort avalanche electron beam accelerator. IEEE Trans. Dielectr. Electr. Insul. 18, 12501255.CrossRefGoogle Scholar
Tarasenko, V.F., Orlovskii, V.M. & Shunailov, S.A. (2003). Forming of an electron beam and a volume discharge in air at atmospheric pressure. Rus. Phys. J. 46, 325327.Google Scholar
Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I. & Balzovsky, E.V. (2012). Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air. Rev. Sci. Instrum. 83, 086106.Google Scholar
Tarasenko, V.F., Skakun, V.S., Kostyrya, I.D., Alekseev, S.B. & Orlovskii, V.M. (2004). On formation of subnanosecond electron beams in air under atmospheric pressure. Laser Part. Beams 22, 7582.CrossRefGoogle Scholar
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). The fast electrons and X-Ray radiation of nanosecond pulsed discharges in gases under 0.1-760 Torr. J. Tech. Phys. 44, 564568.Google Scholar
Zhang, Ch., Tarasenko, V.F., Shao, T., Baksht, E.Kh., Burachenko, A.G., Yan, P. & Kostyray, I.D. (2013). Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air. Laser Part. Beams 31, 353364.Google Scholar
Zhang, Ch., Tarasenko, V.F., Shao, T., Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Yan, P. (2014). Generation of supershort avalanche electron beams in SF6. Laser Part. Beams 32, 331341.Google Scholar