Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T14:43:59.482Z Has data issue: false hasContentIssue false

Vlasov–Maxwell simulations of backward Raman amplification of seed pulses in plasmas

Published online by Cambridge University Press:  31 August 2016

Magdi Shoucri*
Affiliation:
Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada
Bedros Afeyan
Affiliation:
Polymath Research Inc., Pleasanton, CA 94566, USA
*
Address correspondence and reprint requests to: M. Shoucri, Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada. E-mail: [email protected]

Abstract

We study the problem of the amplification of an ultra-short seed pulse via stimulated Raman backscattering (SRB) from a long pump pulse (assumed to have an envelope with a constant amplitude), in an underdense plasma. The SRB interaction couples the pump light wave to a daughter light seed wave propagating in the opposite direction, scattered off an electron plasma wave. In recent numerical simulations, it has been observed that besides stimulated Raman backward scattering (SRBS) and stimulated Raman forward scattering, other high-frequency kinetic instabilities can occur when modified distribution functions exist during the evolution of the system. In particular, we showed the prominent role played by kinetic electrostatic electron nonlinear (KEEN) waves (Afeyan et al., 2004). We continue this work by applying a relativistic Vlasov–Maxwell code to study stimulated KEEN wave scattering (SKEENS) and its role in the SRBS short pulse amplification processes. An analysis of the full spectrum of waves participating in the amplification processes is presented. The absence of spurious noise in grid-based Vlasov codes allows us to follow the evolution of the system with a kinetic (collisionless) description. This affords us a glimpse at the intricate phase-space structures such as trapped particle orbits, which coexist and interact nonlinearly in the electron distribution function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afeyan, B., Casas, F., Crouseilles, N., Dodhy, A., Faou, E., Mehrenberger, M. & Sonnendrucker, E. (2014). Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting. Eur. Phys. J. D 68, 295/1–21.Google Scholar
Afeyan, B., Chou, A.E., Matte, J.P., Town, R.P.J. & Kruer, W.J. (1998). Kinetic theory of electron-plasma and ion acoustic waves in nonuniformly heated laser plasmas. Phys. Rev. Lett. 80, 2322.Google Scholar
Afeyan, B., Won, K., Savchenko, V., Johnston, T., Ghizzo, A. & Bertrand, P. (2004). Kinetic electrostatic electron nonlinear (KEEN) waves and their interactions driven by the ponderomotive force of crossing laser beams. In Proc. Int. Fusion Sciences and Applications (Hammel, B., Meyerhofer, D., Meyer-ter-Vehn, J. and Azechi, H., Eds.), p. 213. La Grange Park, IL: American Nuclear Society. See arXiv:1210.8105.Google Scholar
Benisti, D., Yampolsky, N.A. & Fisch, N.J. (2012). Comparison between nonlinear kinetic modelings of stimulated Raman scattering using envelope equations. Phys. Plasmas 19, 013110.Google Scholar
Bers, A., Shkarofsky, I. & Shoucri, M. (2009). Relativistic Landau damping of electron plasma waves in stimulated Raman scattering. Phys. Plasmas 16, 022104/1–6.Google Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778.Google Scholar
Fisch, N.J. & Malkin, M.V. (2003). Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056.Google Scholar
Forslund, D.W., Kindel, J.M. & Lindman, E.L. (1975). Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Ghizzo, A., Bertrand, P., Shoucri, M., Feix, M., Johnston, T.W., Fijalkow, E. & Feix, M. (1990). A vlasov code for the numerical solution of stimulated Raman scattering. J. Comput. Phys. 90, 431457.Google Scholar
Kruer, W. (1988) The Physics of Laser-Plasma Interaction. Boulder, CO: Addison-Wesley.Google Scholar
Lancia, L., Marquès, J.R., Nakatsutsumi, M., Riconda, C., Weber, S., Hüller, S., Mancic, A., Antici, P., Tikhonchuk, V.T., Heron, A., Audebert, P. & Fuchs, J. (2010). Experimental evidence of short light amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett. 104, 025001/1–4.Google Scholar
Lehmann, G., Schluck, F. & Spatschek, K.H. (2012). Regions of Brillouin seed pulse growth in relativistic laser–plasma interaction. Phys. Plasmas 19, 093120.Google Scholar
Lehmann, G. & Spatschek, K.H. (2013). Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regimes. Phys. Plasmas 20, 073112/1–10.CrossRefGoogle Scholar
Lehmann, G. & Spatschek, K.H. (2014). Non-filamental ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification. Phys. Plasmas 21, 053101/1–14.Google Scholar
Lehmann, G., Spatschek, K.H. & Sewell, G. (2013). Pulse shaping during Raman-seed amplification for short laser pulses. Phys. Rev. E 87, 063107/1–9.Google Scholar
Malkin, V.M. & Fisch, N.J. (2005). Manipulating ultra-intense laser pulses in plasmas. Phys. Plasmas 12, 044507.Google Scholar
Malkin, V.M., Shvets, G. & Fisch, N.J. (1999). Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 44484451.Google Scholar
Malkin, V.M., Toroker, Z. & Fisch, N.J. (2014). Saturation of the leading spike growth in the backward Raman amplifiers. Phys. Plasmas 21, 093112/1–5.Google Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and sel-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.Google Scholar
Mehrenberger, M., Steiner, C., Maaradi, L., Crouseilles, N., Sonnendrücker, E. & Afeyan, B. (2013). Vlasov on GPU (VOG Project). ESAIM Proc. 43, 37.Google Scholar
Mourou, G.A., Fisch, N., Malkin, V., Toroker, Z., Khazanov, E., Sergeev, A., Tajima, T. & LeGarrec, B. (2012). Exawatt–Zetawatt pulse generation and applications. Opt. Commun. 285, 720.CrossRefGoogle Scholar
Ren, J., Cheng, W., Li, S. & Suckewer, S. (2007). A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys. 3, 732736.Google Scholar
Riconda, C., Weber, S., Lancia, L., Marquès, J-R., Mourou, G.A. & Fuchs, J. (2013). Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas 20, 083115.Google Scholar
Shoucri, M. (2008 a). Numerical simulation of wake-field acceleration using an Eulerian Vlasov code. Commun. Comput. Phys. 4, 703718.Google Scholar
Shoucri, M. (2008 b). Numerical Solution of Hyperbolic Differential Equations. New York: Nova Science Publishers, Inc.Google Scholar
Shoucri, M. & Afeyan, B. (2014). Numerical simulation of Raman Scattering with a relativistic Vlasov–Maxwell code: A cascade of nonstationary nonlinear kinetic interactions. In Computational and Numerical Simulations (Awrejcewicz, J., Ed.), pp. 251282. Croatia: InTECH Publ.Google Scholar
Shoucri, M., Gerhauser, H. & Finken, K.H. (2003). Integration of the Vlasov equation along characteristics in one and two dimensions. Comput. Phys. Commun. 154, 6575.Google Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2015). Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas. Phys. Plasmas 22, 053191.Google Scholar
Sircombe, N.J., Arber, T.D. & Dendy, R.O. (2006). Aspects of electron acoustic wave physics in laser backscatter from plasmas. Plasma Phys. Control. Fusion 48, 11411153.Google Scholar
Spatschek, K.H. (1976). Parametrische instabilitäten in plasmen. Fortschr. Phys. 24, 687729.Google Scholar
Strozzi, D.J., Williams, E.A., Langdon, A.B. & Bers, A. (2007). Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter. Phys. Plasmas 14, 013104/1–13.Google Scholar
Strozzi, D.J., Williams, E.A., Langdon, A.B., Bers, A. & Brunner, S. (2010). Eulerian–Lagrangian kinetic simulations of laser–plasma interactions. In Eulerian Codes for the Numerical Solution of the Kinetic Equations of Plasmas (Shoucri, M., Ed.), pp. 89122. New York: Nova Science Publishers, ISBN 978 1 61668 413 6.Google Scholar
Toroker, Z., Malkin, V.M. & Fisch, N. (2014). Backward Raman amplification in the Langmuir wavebreaking regime. Phys. Plasmas 21, 113110/1–10.Google Scholar
Trines, R.M.G.M., Fiuza, F., Bingham, R., Fonseca, R.A., Silva, L.O., Cairns, R.A. & Norreys, P.A. (2011 a). Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses. Phys. Rev. Lett. 107, 105002.CrossRefGoogle ScholarPubMed
Trines, R.M.G.M., Fiuza, F., Bingham, R., Fonseca, R.A., Silva, L.O., Cairns, R.A. & Norreys, P.A. (2011 b). Simulations of efficient Raman amplification into the multipetawatt regime. Nat. Phys. 7, 8792.Google Scholar
Valentini, F., O'Neil, T.M. & Dubin, D.H.E. (2006). Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13, 052303/1–7.Google Scholar
Vu, H.X., DuBois, D.F. & Bezzerides, B. (2007). Inflation threshold: A nonlinear trapping-induxed threshold for the rapid onset of stimulated Raman scattering form a single laser speckle. Phys. Plasmas 14, 012702.Google Scholar
Wang, T.-L., Clark, D.S., Strozzi, D.J., Wilks, S.C., Martins, S.F. & Kirkwood, R.K. (2010). Particle-in-cell simulations of kinetic effects in plasma based backward Raman amplification in underdense plasmas. Phys. Plasmas 17, 023109/1–9.Google Scholar
Yin, L., Daughton, W., Albright, B.J., Bowers, K.J., Montgomery, D.S., Kline, J.L., Fernandez, J.C. & Roper, Q. (2006). Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime. Phys. Plasmas 13, 072701.CrossRefGoogle Scholar