Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:06:48.449Z Has data issue: false hasContentIssue false

Strong terahertz field generation by relativistic self-focusing of hollow Gaussian laser beam in magnetoplasma

Published online by Cambridge University Press:  09 December 2015

Saba Hussain
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
Ram Kishor Singh*
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
R. P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
*
Address correspondence and reprint requests to: R. K. Singh, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India. E-mail: [email protected]

Abstract

The present paper proposes a model for the generation of Terahertz (THz) radiation by self-focused hollow Gaussian beam (HGB) in collisionless magnetized rippled density plasma. At high intensities, the change in the electron mass occurs due to relativistic effect, introducing a nonlinearity in the plasma leading to the self-focusing of the HGB. The nonlinear interaction of this highly intense self-focused HGB with the electron plasma wave in the rippled density plasma, satisfying proper phase matching conditions, results in the resonant excitation of THz radiations at the beat frequency. We have studied the dependence of generated THz radiations on the order of the HGB as well as on the static background magnetic field. The results show that the intensity of the generated radiations is highly sensitive to both of these parameters. For the current scheme the power of the generated THz waves comes out to be of the order of Gigawatts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609.CrossRefGoogle Scholar
Amico, C., Houard, A., Akturk, S., Liu, Y., Bloas, J.L., Franco, M., Prade, B., Couairon, A., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Forward THz radiation emission by femtosecond filamentation in gases: Theory and experiment. New J. Phys. 10, 013015.Google Scholar
Bhasin, L. & Tripathi, V.K. (2009). Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasmas 16, 103105.CrossRefGoogle Scholar
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539.Google Scholar
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Yugami, N. & Nishida, Y. (2005). Microwave emission from TW-100 fs laser irradiation of gas jet. Laser Part. Beams 23, 583.CrossRefGoogle Scholar
Ebbinghaus, S., Schröck, K., Schauer, J.C., Bründermann, E., Heyden, M., Schwaab, G., Böke, M., Winter, J., Tani, M. & Havenit, M. (2006). Terahertz time-domain spectroscopy as a new tool for the characterization of dust forming plasmas. Plasma Sources Sci. Technol. 15, 72.Google Scholar
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 26.Google Scholar
Hamster, H., Sullivan, A., White, W. & Falcne, R.W. (1993). Subpicosecond electromagnetic pulses from intense laser–plasma interaction. Phys. Rev. Lett. 71, 2725.CrossRefGoogle ScholarPubMed
Han, P.Y., Cho, G.C. & Xhang, X.C. (2000). Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242.CrossRefGoogle ScholarPubMed
Hassan, M.B., Al-Janabi, M.B., Singh, M. & Sharma, R.P. (2012). Terahertz generation by the high intense laser beam. J. Plasma Phys. 78, 553.CrossRefGoogle Scholar
Hasson, K.I., Sharma, A.K. & Khamis, R.A. (2010). Relativistic laser self-focusing in a plasma with transverse magnetic field. Phys. Scr. 81, 025505.Google Scholar
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.CrossRefGoogle ScholarPubMed
Hu, G.-Y., Shen, B., Lei, A.-L., Li, R.-X. & Xu, Z.-Z. (2010). Transition-Cherenkov radiation of terahertz generated by super-luminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.Google Scholar
Hussain, S., Singh, M., Singh, R.K. & Sharma, R.P. (2014). THz generation by self-focusing of hollow Gaussian laser beam in magnetised plasma. Europhys. Lett. 107, 65002.CrossRefGoogle Scholar
Jepsen, P.U., Jacobsen, R.H. & Keiding, S.R. (1996). Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Amer. B 13, 2424.CrossRefGoogle Scholar
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605.Google Scholar
Kostin, V.A. & Vvedenskii, N.V. (2010). Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse. Opt. Lett. 35, 247.Google Scholar
Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shmizu, Y. & Sasada, H. (1997). Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713.Google Scholar
Kumar, S., Singh, R.K., Singh, M. & Sharma, R.P. (2015). THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma. Laser Part. Beams 33, 257.Google Scholar
Lee, Y.S., Meade, T., Perlin, V., Winful, H., Norris, T.B. & Galvanauskas, A. (2000). Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505.Google Scholar
Liu, J., Dai, J., Chin, S.L. & Zhang, X.C. (2010). Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics 4, 627.Google Scholar
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301.Google Scholar
Sharma, R.P. & Singh, R.K. (2014). Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasmas 21, 073101.Google Scholar
Sharma, R.P., Singh, M., Sharma, P., Chauhan, P.K. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531.Google Scholar
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.Google Scholar
Shen, Y.C., Upadhya, P.C., Beere, H.E., Linfield, E.H., Davies, A.G., Gregory, I.S., Baker, C., Tribe, W.R. & Evans, M.J. (2004). Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett. 85, 164.Google Scholar
Sheng, Z.M., Mima, K. & Zhang, J. (2005). Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103.Google Scholar
Shukla, P.K. & Sharma, R.P. (1982). Alfven-wave generation in a beam-plasma system. Phys. Rev. A 25, 2816.Google Scholar
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. Europhys. Lett. 104, 35002.Google Scholar
Singh, R.K. & Sharma, R.P. (2014). Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma. Phys. Plasmas. 21, 113109.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectrics, Plasma and Semiconductors. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009). Focusing of a dark hollow Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 731.Google Scholar
Sprangle, P., Penano, J.R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.CrossRefGoogle ScholarPubMed
Sprangle, P., Tang, C. & Esarey, E. (1987). Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. PS-15, 145.CrossRefGoogle Scholar
Sun, G., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.Google Scholar
Tonouchi, M. (2007). Cutting-edge terahertz technology. Nat. Photonics 1, 97.Google Scholar
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D: Appl. Phys. 36, R151.CrossRefGoogle Scholar
Xie, X., Dai, J. & Zhang, X.C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.Google Scholar
Xu, X., Wang, Y. & Jhe, W. (2000). Theory of atom guidance in a hollow laser beam: Dressed-atom approach. J. Opt. Soc. Am. B 17, 1039.CrossRefGoogle Scholar
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasmawaveguide. Phys. Rev. Lett. 100, 195001.CrossRefGoogle Scholar
Yoshii, J., Lai, C.H., Katsouleas, T., Joshi, C. & Mori, W.B. (1997). Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 4194.Google Scholar
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. (2002). Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89, 065003.Google Scholar