Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T12:22:50.288Z Has data issue: false hasContentIssue false

Spectral tomographic analysis of Bremsstrahlung X-rays generated in a laser-produced plasma

Published online by Cambridge University Press:  17 October 2016

Y.J. Rhee*
Affiliation:
Korea Atomic Energy Research Institute, Daejeon 34057, Korea Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea
S.M. Nam
Affiliation:
Korea Atomic Energy Research Institute, Daejeon 34057, Korea
J. Peebles
Affiliation:
University of California, San Diego, La Jolla, California 92093, USA
H. Sawada
Affiliation:
University of California, San Diego, La Jolla, California 92093, USA
M. Wei
Affiliation:
General Atomics, San Diego, California 92121, USA
X. Vaisseau
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
T. Sasaki
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
L. Giuffrida
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France Institute of Physics, ASCR, v.v.i (FZU), ELI-Beamlines project, Prague, Czech Republic
S. Hulin
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
B. Vauzour
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
J.J. Santos
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
D. Batani
Affiliation:
University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
H.S. McLean
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
P.K. Patel
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Y.T. Li
Affiliation:
Institute of Physics, CAS, Beijing 100190, China
D.W. Yuan
Affiliation:
National Astronomical Observatories, CAS, Beijing 100012, China
K. Zhang
Affiliation:
National Astronomical Observatories, CAS, Beijing 100012, China
J.Y. Zhong
Affiliation:
National Astronomical Observatories, CAS, Beijing 100012, China
C.B. Fu
Affiliation:
Shanghai Jiao Tong University, Shanghai 200240, China
N. Hua
Affiliation:
National Laboratory on High Power Laser and Physics, SIOM, Shanghai 201800, China
K. Li
Affiliation:
National Laboratory on High Power Laser and Physics, SIOM, Shanghai 201800, China
Y. Zhang
Affiliation:
National Laboratory on High Power Laser and Physics, SIOM, Shanghai 201800, China
J.Q. Zhu
Affiliation:
National Laboratory on High Power Laser and Physics, SIOM, Shanghai 201800, China
I.J. Kim
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Advanced Photonics Research Institute, GIST, Gwangju 61005, Korea Optical Instrumentation Development Team, KBSI, Daejeon 34133, Korea
J.H. Jeon
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea
T.M. Jeong
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Advanced Photonics Research Institute, GIST, Gwangju 61005, Korea
I.W. Choi
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Advanced Photonics Research Institute, GIST, Gwangju 61005, Korea
H.W. Lee
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea
J.H. Sung
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Advanced Photonics Research Institute, GIST, Gwangju 61005, Korea
S.K. Lee
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Advanced Photonics Research Institute, GIST, Gwangju 61005, Korea
C.H. Nam
Affiliation:
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea Department of Physics and Photon Science, GIST, Gwangju 61005, Korea
*
Address correspondence and reprint requests to: Y.J. Rhee, Korea Atomic Energy Research Institute, Daejeon 34057, Korea and Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Korea. E-mail: [email protected]

Abstract

A new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Borodziuk, S., Pisarczyk, T., Chodukowski, T., Krousky, E., Masek, K., Skala, J., Ullschmied, J. & Rhee, Y.-J. (2010). Highly efficient acceleration and collimation of high density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 96, 251502.Google Scholar
Badziak, J., Pisarczyk, T., Chodukowski, T., Kasperczuk, A., Parys, P., Rosiński, M., Wołowski, J., Krousky, E., Krasa, J., Mašk, K., Pfeifer, M., Skala, J., Ullschmied, J., Velyhan, A., Dhareshwar, L.J., Gupta, N.K., Rhee, Y.-J., Torrisi, L. & Pisarczyk, P. (2009). Formation of a supersonic laser-driven plasma jet in a cylindrical channel. Phys. Plasmas 16, 114506.CrossRefGoogle Scholar
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., De Angelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L.A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, Ph., O'Dell, T., Pisarczyk, T., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, Ch., Ullschmied, J., Velyhan, A. & Vinci, T. (2014). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.Google Scholar
Bonnet, T., Comet, M., Denis-Petit, D., Gobet, F., Hannachi, F., Tarisien, M., Versteegen, M. & ALeonard, M.M. (2013). Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510.CrossRefGoogle Scholar
Chen, C.D., King, J.A., Key, M.H., Akli, K.U., Beg, F.N., Chen, H., Freeman, R.R., Link, A., Mackinnon, A.J., MacPhee, A.G., Patel, P.K., Porkolab, M., Stephens, R.B. & Van Woerkom, L.D. (2008). A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. Rev. Sci. Instrum. 79, 10E305.Google Scholar
Chen, C.D., Patel, P.K., Hey, D.S., Mackinnon, A.J., Key, M.H., Akli, K.U., Bartal, T., Beg, F.N., Chawla, S., Chen, H., Freeman, R.R., Higginson, D.P., Link, A., Ma, T.Y., MacPhee, A.G., Stephens, R.B., Van Woerkom, L.D., Westover, B. & Porkolab, M. (2009). Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Phys. Plasmas 16, 082705.Google Scholar
Choi, I.W., Kim, I.J., Pae, K.H., Nam, K.H., Lee, C.-L., Yun, H., Kim, H.T., Lee, S.K., Yu, T.J., Sung, J.H., Pirozhkov, A.S., Ogura, K., Orimo, S., Daido, H. & Lee, J. (2011). Simultaneous generation of ions and high-order harmonics from thin conjugated polymer foil irradiated with ultrahigh contrast laser. Appl. Phys. Lett. 99, 181501.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670673.Google Scholar
Fujioka, S., Johzaki, T., Arikawa, Y., Zhang, Z., Morace, A., Ikenouchi, T., Ozaki, T., Nagai, T., Abe, Y., Kojima, S., Sakata, S., Inoue, H., Utsugi, M., Hattori, S., Hosoda, T., Lee, S.H., Shigemori, K., Hironaka, Y., Sunahara, A., Sakagami, H., Mima, K., Fujimoto, Y., Yamanoi, K., Norimatsu, T., Tokita, S., Nakata, Y., Kawanaka, J., Jitsuno, T., Miyanaga, N., Nakai, M., Nishimura, H., Shiraga, H., Nagatomo, H. & Azechi, H. (2015). Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment. Phys. Rev. E, 91, 063102.Google Scholar
Fujioka, S., Takabe, H., Yamamoto, N., Salzmann, D., Wang, F., Nishimura, H., Li, Y., Dong, Q., Wang, S., Zhang, Y., Rhee, Y.-J., Lee, Y.-W., Han, J.-M., Tanabe, M., Fujiwara, T., Nakabayashi, Y., Zhao, G., Zhang, J. & Mima, K. (2009a). X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nat. Phys. 5(11), 821825.Google Scholar
Fujioka, S., Yamamoto, N., Salzmann, D., Wang, F., Li, Y., Dong, Q., Wang, S., Zhang, Y., Rhee, Y.-J., Lee, Y.-W., Han, J.-M., Kwon, D.-H., Zhong, J., Zhao, G., Tanabe, M., Fujiwara, T., Nakabayashi, Y., Zhang, J., Nishimura, H., Takabe, H. & Mima, K. (2009b). Laboratory spectroscopy of silicon plasmas photoionized by mimic astrophysical compact object. Plasma Phys. Control. Fusion 51, 124032.Google Scholar
Hoarty, D., James, S., Davies, H., Brown, C., Harris, J., Smith, C., Davidson, S., Kerswill, E., Crowley, B. & Rose, S. (2007). Heating of buried layer targets by 1ω and 2ω pulses using the HELEN cpa laser. High Energy Density Phys. 3, 115119.Google Scholar
Honrubia, J. & Meyer-ter-Vehn, J. (2009). Fast ignition of fusion targets by laser-driven electrons. Plasma Phys. Control. Fusion 51, 014008.Google Scholar
Key, M., Akli, K., Beg, F., Chen, M., Chung, H.-K., Freeman, R., Foord, M., Green, J., Gu, P., Gregori, G., Habara, H., Hatch- ett, S., Hey, D., Hill, J., King, J., Kodama, R., Koch, J., Lancaster, K., Lasinski, B., Langdon, B., MacKinnon, A., Murphy, C., Norreys, P., Patel, N., Patel, P., Pasley, J., Snavely, R., Stephens, R., Stoeckl, C., Tabak, M., Theobald, W., Tanaka, K., Town, R., Wilks, S., Yabuuchi, T. & Zhang, B. (2006). J. de Physique IV (Proc.) 133, 371378.Google Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: Fast heating scalable to laser fusion ignition. Nature 418, 933.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle Scholar
Medowcroft, A.L., Bentley, C.D. & Stott, E.N. (2008). Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics. Rev. Sci. Instrum. 79, 113102.CrossRefGoogle Scholar
Nishimura, H., Mishra, R., Ohshima, S., Nakamura, H., Tanabe, M., Fujiwara, T., Yamamoto, N., Fujioka, S., Batani, D., Veltcheva, M., Desai, T., Jafer, R., Kawamura, T., Sentoku, Y., Mancini, R., Hakel, P., Koike, F. & Mima, K. (2011). Energy transport and isochoric heating of a low-z, reduced-mass target irradiated with a high intensity laser pulse. Phys. Plasmas 18, 022702.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.Google Scholar
Perez, F., Gremillet, L., Koenig, M., Baton, S.D., Audebert, P., Chahid, M., Rousseaux, C., Drouin, M., Lefebvre, E., Vinci, T., Rassuchine, J., Cowan, T., Gaillard, S.A., Flippo, K.A. & Shepherd, R. (2010). Enhanced isochoric heating from fast electrons produced by high-contrast, relativistic-intensity laser pulses. Phys. Rev. Lett. 104, 085001.Google Scholar
Saemann, A., Eidmann, K., Golovkin, I.E., Mancini, R.C., An- dersson, E., Fӧrster, E. & Witte, K. (1999). Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target. Phys. Rev. Lett. 82, 48434846.Google Scholar
Scott, R.H.H., Clark, E.L., Pérez, F., Streeter, M.J.V., Davies, J.R., Schlenvoigt, H.-P., Santos, J.J., Hulin, S., Lancaster, K.L., Baton, S.D., Rose, S.J. & Norreys, P.A. (2013). Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors. Rev. Sci. Instrum. 84, 083505.Google Scholar
Shiraga, H., Fujioka, S., Nakai, M., Watari, T., Nakamura, H., Arikawa, Y., Hosoda, H., Nagai, T., Koga, M., Kikuchi, H., Ishii, Y., Sogo, T., Shigemori, K., Nishimura, H., Zhang, Z., Tanabe, M., Ohira, S., Fujii, Y., Namimoto, T., Sakawa, Y., Maegawa, O., Ozaki, T., Tanaka, K.A., Habara, H., Iwawaki, T., Shimada, K., Nagatomo, H., Johzaki, T., Sunahara, A., Murakami, M., Sakagami, H., Taguchi, T., Norimatsu, T., Homma, H., Fujimoto, Y., Iwamoto, A., Miyanaga, N., Kawanaka, J., Jitsuno, T., Nakata, Y., Tsubakimoto, K., Sueda, K., Morio, N., Matsuo, S., Kawasaki, T., Sawai, K., Tsuji, K., Murakami, H., Kanabe, T., Kondo, K., Kodama, R., Sarukura, N., Shimizu, T., Mima, K., Azechi, H. (2012). Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density Phys. 8(3), 227230.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Theobald, W., Solodov, A.A., Stoeckl, C., Anderson, K.S., Betti, R., Boehly, T.R., Craxton, R.S., Delettrez, J.A., Dorrer, C., Frenje, J.A., Glebov, V.Yu., Habara, H., Tanaka, K.A., Knauer, J.P., Lauck, R., Marshall, F.J., Marshall, K.L., Meyerhofer, D.D., Nilson, P.M., Patel, P.K., Chen, H., Sangster, T.C., Seka, W., Sinenian, N., Ma, T., Beg, F.N., Giraldez, E. & Stephens, R.B. (2011). Initial cone-in-shell fast ignition experiments on OMEGA. Phys. Plasmas 18, 056305.Google Scholar
Vaisseau, X., Debayle, A., Honrubia, J.J., Hulin, S., Morace, A., Nicolaï, Ph., Sawada, H., Vauzour, B., Batani, D., Beg, F.N., Davies, J.R., Fedosejevs, R., Gray, R.J., Kemp, G.E., Kerr, S., Li, K., Link, A., McKenna, P., McLean, H.S., Mo, M., Patel, P.K., Park, J., Peebles, J., Rhee, Y.J., Sorokovikova, A., Tikhonchuk, V.T., Volpe, L., Wei, M. & Santos, J.J. (2015). Enhanced relativistic electron beam energy loss in warm dense aluminum. Phys. Rev. Lett. 114, 095004.Google Scholar
Vauzour, B., Santos, J.J., Batani, D., Baton, S.D., Koenig, M., Nicolaı, Ph., Perez, F., Beg, F.N., Benedetti, C., Benocci, R., Brambrink, E., Chawla, S., Coury, M., Dorchies, F., Fourment, C., Galimberti, M., Gizzi, L.A., Heathcote, R., Higginson, D.P., Honrubia, J.J., Hulin, S., Jafer, R., Jarrot, L.C., Labate, L., Lancaster, K., Koester, P., MacKinnon, A.J., McKenna, P., McPhee, A.G., Nazarov, W., Pasley, J., Ramis, R., Rhee, Y., Regan, C., Ribeyre, X., Richetta, M., Serres, F., Schlenvoigt, H.-P., Schurtz, G., Sgattoni, A., Spindloe, C., Vaisseau, X., Volpe, L. & Yahia, V. (2011). Experimental study of fast electron propagation in compressed matter. Nuclear Instrum. Meth. Phys. Res. A 653, 176180.Google Scholar
Vauzour, B., Santos, J.J., Debayle, A., Hulin, S., Schlenvoigt, H.-P., Vaisseau, X., Batani, D., Baton, S.D., Honrubia, J.J., Nicolaï, Ph., Beg, F.N., Benocci, R., Chawla, S., Coury, M., Dorchies, F., Fourment, C., d'Humières, E., Jarrot, L.C., McKenna, P., Rhee, Y.J., Tikhonchuk, V.T., Volpe, L. & Yahia, V. (2012). Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects. Phys. Rev. Lett. 109, 255002.Google Scholar
Zhao, J.R., Zhang, X.P., Yuan, D.W., Chen, L.M., Li, Y.T., Fu, C.B., Rhee, Y.J., Li, F., Zhu, B.J., Li, Y.F., Liao, G.Q., Zhang, K., Han, B., Liu, C., Huang, K., Ma, Y., Li, Yi.F., Xiong, J., Huang, X.G., Fu, S.Z., Zhu, J.Q., Zhao, G. & Zhang, J. (2015). Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target. Rev. Sci. Instrum. 86, 063505.Google Scholar