Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:25:07.106Z Has data issue: false hasContentIssue false

Shock-wave physics experiments with high-power proton beams

Published online by Cambridge University Press:  09 March 2009

K. Baumung
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
H.J. Bluhm
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
B. Goel
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
P. Hoppé
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
H.U. Karow
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
D. Rusch
Affiliation:
Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
V.E. Fortov
Affiliation:
Russian Academy of Sciences, Institute of Chemical Physics, Chernogolovka, 142432, Russia
G.I. Kanel
Affiliation:
Russian Academy of Sciences, Institute of Chemical Physics, Chernogolovka, 142432, Russia
S.V. Razorenov
Affiliation:
Russian Academy of Sciences, Institute of Chemical Physics, Chernogolovka, 142432, Russia
A.V. Utkin
Affiliation:
Russian Academy of Sciences, Institute of Chemical Physics, Chernogolovka, 142432, Russia
O.Yu. Vorobjev
Affiliation:
Russian Academy of Sciences, Institute of Chemical Physics, Chernogolovka, 142432, Russia

Abstract

At the Karlsruhe Light Ion Facility (KALIF) high-power proton beams with power densities up to ∼ 1 TW/cm2 are generated depositing up to 40 kJ of ion energy in a focal spot of 6∼8-mm diameter. With peak proton energies of ∼ 1.7 MeV, specific power densities of up to 200 TW/g and energy densities of several MJ/g can be realized. This is a regime in which experiments providing information on the equation of state (EOS), dynamics of the beam interaction with condensed targets, and properties of solids and plasma at high-energy densities are of particular interest. In the present paper we report on shock-wave experiments using solid targets and high-resolution laser-Doppler velocimetry. The empirical data provided are used to verify code simulations and the used EOS-data in these calculations, to investigate the beam-target interaction, and to perform series of shock-wave measurements of properties of different materials. The ∼40-ns FWHM proton beam can be used to generate, by material ablation or impact of ablatively accelerated flyers, intense shock waves, permitting the investigation of shock compressibility, dynamic failure of solids under nanosecond load duration, phase transitions, and viscosity at strain rates up to ∼108 s-1. Recently an improved line-imaging velocimeter was set up to measure the spatial velocity variation with a maximum resolution of < 10 μm, opening the possibility to address new issues like growth of instabilities or local dynamics of the spall fracture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altshuler, L.V. et al. 1981. J. Appl. Math. Tech. Phys. (USSR) 2, 3.Google Scholar
Bachmann, H. et al. 1988 In Proc. 7th Int. Conf. on High-Power Particle Beams—Karlsruhe 1988, (Kernforschungszentrum Karlsruhe, Karlsruhe, Germany) Vol. I, p. 827.Google Scholar
Barker, L.M. & Hollenbach, R.E. 1972 J. Appl. Phys. 43, 4669.CrossRefGoogle Scholar
Baumung, K. et al. 1992 In Proc. 9th Int. Conf. on High-Power Particle Beams, Vol. I (NTIS, Springfield, VA) p. 68.Google Scholar
Baumung, K. et al. 1994 J. Appl. Phys. 75, 7633.CrossRefGoogle Scholar
Baumung, K. et al. 1995a Forschungszentrum Karlsruhe Report FZKA 5590.Google Scholar
Baumung, K. et al. 1995b Int. J. Impact Eng. 17, 38.CrossRefGoogle Scholar
Bloomquist, D.D. & Sheffield, S.A. 1983 J. Appl. Phys. 54, 1717.CrossRefGoogle Scholar
Bluhm, H. et al. 1985 In 5th IEEE Pulsed Power Conf. (Arlington, VA), p. 114.Google Scholar
Bluhm, H. et al. 1992a In Proc. 9th Int. Conf. on High-Power Particle Beams- Washington 1992, Vol. I, p. 51.Google Scholar
Bluhm, H. et al. 1992b Proc. IEEE, 80, 995.CrossRefGoogle Scholar
Bluhm, H. et al. 1994 In Proc. 10th Int. Conf. on High-Power Particle Beams-San Diego, CA (NTIS, Springfield, VA), Vol. I, p. 77.Google Scholar
Bushman, A.V. et al. 1992 Intense Dynamic Loading of Condensed Matter (Taylor & Francis, Washington, DC).Google Scholar
Curran, D.R. et al. 1987 Phys. Rep. 147, 253.CrossRefGoogle Scholar
Davison, L. & Graham, R.A. 1979 Phys. Rep. 55, 255.CrossRefGoogle Scholar
Ebeling, W. et al. 1991 Thermophysical Properties of Hot Dense Plasmas, Teubner-Texte zur Physik, Bd. 25, (Teubner, Stuttgart-Leipzig).Google Scholar
Eliezer, S. et al. 1986 An Introduction to Equation of State (Cambridge University Press, Cambridge).Google Scholar
Eliezer, S. & Gilath, I. 1990 J. Appl. Phys. 67, 715.CrossRefGoogle Scholar
Godunov, S.K. 1959 Mat. Sbornik 47, 271.Google Scholar
Goel, B. & Bluhm, H. 1988 J. de Physique 49, C7–169.Google Scholar
Gray, G.T. III 1990 Shock Compression of Condensed Matter-1989 (Elsevier Science, B.V.).Google Scholar
Hemsing, W.F. et al. 1990 Proc. SPIE 1346, 133.CrossRefGoogle Scholar
Hoppé, P. et al. 1995 Forschungszentrum Karlsruhe Report FZKA 5590.Google Scholar
Kanel, G.I. et al. 1993 J. Appl. Phys. 74, 7162.CrossRefGoogle Scholar
Kanel, G.I. et al. 1994 In AIP Press Conf. Proc. (Woodbury, NY), Part 2, p. 1043.CrossRefGoogle Scholar
Karow, H.U. et al. In Proc. 8th Int. Conf. on High-Power Particle Beams–Novosibirsk 1990 (World Scientific, Singapore), p. 450.Google Scholar
Kessler, G. et al. 1994 In AIP Press Conf. Proc. (Woodbury, NY), p. 1887.CrossRefGoogle Scholar
Kiselev, A.N. & Falkov, A.A. 1982 Fiz. Goreniya i Vzryva (USSR) 18, 105.Google Scholar
Kutsar, A.R. et al. 1982 Letters to ZETF, 35, 91.Google Scholar
Laqua, H. et al. 1995 J. Appl. Phys. 77, 5545.CrossRefGoogle Scholar
Marsh, S.P. 1980 LASL Shock Hugoniot Data (Univ. of California Press, Berkeley).Google Scholar
Ng, A. & Piriz, A.R. 1989 Phys. Rev. A40, 114.Google Scholar
Meyers, M.A. 1979 Met. Trans. 10A, 1723.CrossRefGoogle Scholar
Nemat-Nasser, S. et al. 1992 Shock Compression of Condensed Matter-1991 (North Holland, Amsterdam).Google Scholar
Polyshchuk, A. Ya. et al. 1991 Sov. J. Plasma Phys. 17, 523.Google Scholar
Razorenov, S.V. et al. 1990 Acad. of Sciences USSR, Doklady, 315, 609 (in Russian).Google Scholar
Razorenov, S.V. et al. 1995 High Pressure Res. in print.Google Scholar
Schimassek, W. et al. 1991 Rev. Sci. Instum. 62, 168.CrossRefGoogle Scholar
Sesame Library 1982 Lawrence Livermore National Laboratory Report UCID-118574–82–2.Google Scholar
Sikka, S.K. et al. 1982 Prog. Mater. Sci. 27, 245.CrossRefGoogle Scholar
Tsakiris, G.D. & Eidmann, K. 1987 JQSRT 38, 353.CrossRefGoogle Scholar
Van Leer, B. 1978 J. Compt. Phys. 32, 101.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. 1967 Physics of Shock Waves (Academic Press, New York).Google Scholar
Ziegler, J.F., ed. 1980 Handbook of Range Distributions for Energetic Ions in all Elements (Pergamon Press, New York).Google Scholar